期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2021年 第7卷 第12期 doi: 10.1016/j.eng.2020.05.025

肠道菌群与冠状动脉疾病的发生风险

a Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
b Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China
c Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
d Department of Cardiology, The Fifth People’s Hospital of Shanghai, Fudan University, Shanghai 200240, China
e Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA

# These authors contributed equally to this study.

收稿日期: 2019-10-09 修回日期: 2020-04-27 录用日期: 2020-05-06 发布日期: 2022-02-05

下一篇 上一篇

摘要

在过去的几年中,小规模队列研究发现肠道菌群随冠状动脉疾病出现而改变。既往研究中所发现的冠状动脉疾病患者肠道中富集或减少的微生物群,在其他冠状动脉疾病队列中是否具有可重复性,有待进一步研究和验证。本研究共纳入78 名受试者,其中19 例受试者无冠状动脉狭窄(Ctrl 组),14 例受试者冠状动脉狭窄程度小于50%(LT50 组),45 例受试者冠状动脉狭窄程度大于50%(GT50 组)。采集受试者粪便标本,并提取DNA 进行16S 核糖体RNA 基因测序。对可执行的分类操作单位(operational taxonomic units, OTU)进行分析以确定不同类群的分类单元,采用多变量logistic 回归分析检验所定义的分类单元是否能独立预测冠状动脉疾病风险。结果显示,δ-变形杆菌纲、梭杆菌属、嗜胆菌属、放线菌属和梭菌XIX属在Ctrl 组中富集;普雷沃氏菌科、副拟杆菌属和芽孢杆菌属在LT50 组中富集;罗氏菌属和丁酸单胞菌属在GT50 组中富集。δ-变形杆菌纲、梭杆菌属、嗜胆菌属和脱硫弧菌科种群的增加与冠状动脉疾病风险降低相关。在相对丰度高于中位数的个体中,冠状动脉疾病风险分别降低为相对丰度低于中位数的个体的0.26 倍、0.21 倍、0.18 倍和0.26 倍(p < 0.05),而普雷沃氏菌科种群的增加与冠状动脉疾病风险增加相关,冠状动脉疾病风险增加5.63 倍(p < 0.01)。使用20 种微生物群联合诊断LT50组与Ctrl组、GT50组与Ctrl组、LT50组+GT50组与Ctrl组、GT50组与Ctrl组+LT50组,受试者工作特征
(ROC)曲线下的面积均高于0.88。然而,除拟杆菌属外,既往研究所报道的在冠状动脉疾病或健康对照组受试者中富集的肠道菌群在本队列并未观察到。总之,冠状动脉疾病与健康对照组受试者具有不同的菌群特征。不同队列研究所发现的冠状动脉疾病富集的肠道菌群特征不具有重复性,提示肠道菌群较难应用于冠状动脉疾病的早期诊断和预防。综合本研究与既往研究结果,只有拟杆菌属丰度减少是冠状动脉疾病进展的可靠标志物。

补充材料

图片

图1

图2

图3

图4

图5

图6

参考文献

[ 1 ] Conlon MA, Bird AR. The impact of diet and lifestyle on gut microbiota and human health. Nutrients 2014;7(1):17–44. 链接1

[ 2 ] Nagao-Kitamoto H, Kitamoto S, Kuffa P, Kamada N. Pathogenic role of the gut microbiota in gastrointestinal diseases. Intest Res 2016;14(2):127–38. 链接1

[ 3 ] Donaldson DS, Mabbott NA. The influence of the commensal and pathogenic gut microbiota on prion disease pathogenesis. J Gen Virol 2016;97(8):1725–38. 链接1

[ 4 ] Budden KF, Gellatly SL, Wood DLA, Cooper MA, Morrison M, Hugenholtz P, et al. Emerging pathogenic links between microbiota and the gut–lung axis. Nat Rev Microbiol 2017;15(1):55–63. 链接1

[ 5 ] Brown JM, Hazen SL. The gut microbial endocrine organ: bacterially derived signals driving cardiometabolic diseases. Annu Rev Med 2015;66(1):343–59. 链接1

[ 6 ] Clarke G, Stilling RM, Kennedy PJ, Stanton C, Cryan JF, Dinan TG. Minireview: gut microbiota: the neglected endocrine organ. Mol Endocrinol 2014;28 (8):1221–38. 链接1

[ 7 ] Geurts L, Neyrinck AM, Delzenne NM, Knauf C, Cani PD. Gut microbiota controls adipose tissue expansion, gut barrier and glucose metabolism: novel insights into molecular targets and interventions using prebiotics. Beneficial Microbes 2014;5(1):3–17. 链接1

[ 8 ] Sun J, Chang EB. Exploring gut microbes in human health and disease: pushing the envelope. Genes Dis 2014;1(2):132–9. 链接1

[ 9 ] Emoto T, Yamashita T, Kobayashi T, Sasaki N, Hirota Y, Hayashi T, et al. Characterization of gut microbiota profiles in coronary artery disease patients using data mining analysis of terminal restriction fragment length polymorphism: gut microbiota could be a diagnostic marker of coronary artery disease. Heart Vessels 2017;32(1):39–46. 链接1

[10] Emoto T, Yamashita T, Sasaki N, Hirota Y, Hayashi T, So A, et al. Analysis of gut microbiota in coronary artery disease patients: a possible link between gut microbiota and coronary artery disease. J Atheroscler Thromb 2016;23 (8):908–21. 链接1

[11] Liu H, Chen X, Hu X, Niu H, Tian R, Wang H, et al. Alterations in the gut microbiome and metabolism with coronary artery disease severity. Microbiome 2019;7(1):68. 链接1

[12] Zhu Q, Gao R, Zhang Y, Pan D, Zhu Y, Zhang X, et al. Dysbiosis signatures of gut microbiota in coronary artery disease. Physiol Genomics 2018;50(10):893–903. 链接1

[13] Yoshida N, Sasaki K, Sasaki D, Yamashita T, Fukuda H, Hayashi T, et al. Effect of resistant starch on the gut microbiota and its metabolites in patients with coronary artery disease. J Arterioscler Thromb 2019;26(8):705–19. 链接1

[14] Wang F, Yu T, Huang G, Cai D, Liang X, Su H, et al. Gut microbiota community and its assembly associated with age and diet in Chinese centenarians. Microb Biotechnol 2015;25(8):1195–204. 链接1

[15] Zhao L, Zhang F, Ding X, Wu G, Lam YY, Wang X, et al. Gut bacteria selectively promoted by dietary fibers alleviate type 2 diabetes. Science 2018;359 (6380):1151–6. 链接1

[16] Wang Z, Zhao Y. Gut microbiota derived metabolites in cardiovascular health and disease. Protein Cell 2018;9(5):416–31. 链接1

[17] Seldin MM, Meng Y, Qi H, Zhu WF, Wang Z, Hazen SL, et al. Trimethylamine N-oxide promotes vascular inflammation through signaling of mitogenactivated protein kinase and nuclear factor-jB. J Am Heart Assoc 2016;5(2): e002767. 链接1

[18] Barisione C, Ghigliotti G, Canepa M, Balbi M, Brunelli C, Ameri P. Indoxyl sulfate: a candidate target for the prevention and treatment of cardiovascular disease in chronic kidney disease. Curr Drug Targets 2015;16(4):366–72. 链接1

[19] Bogiatzi C, Gloor G, Allen-Vercoe E, Reid G, Wong RG, Urquhart BL, et al. Metabolic products of the intestinal microbiome and extremes of atherosclerosis. Atherosclerosis 2018;273:91–7. 链接1

[20] Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Lozupone CA, Turnbaugh PJ, et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc Natl Acad Sci USA 2011;108(Suppl 1):4516–22. 链接1

[21] Li W, Godzik A. CD-HIT: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 2006;22(13):1658–9. 链接1

[22] Wang Q, Garrity GM, Tiedje JM, Cole JR. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 2007;73(16):5261–7. 链接1

[23] Morris EK, Caruso T, Buscot F, Fischer M, Hancock C, Maier TS, et al. Choosing and using diversity indices: insights for ecological applications from the German Biodiversity Exploratories. Ecol Evol 2014;4(18):3514–24. 链接1

[24] Goecks J, Nekrutenko A. Taylor J; The Galaxy Team. Galaxy: a comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciences. Genome Biol 2010;11(8):R86. 链接1

[25] Blankenberg D, Von Kuster G, Coraor N, Ananda G, Lazarus R, Mangan M, et al. Galaxy: a web-based genome analysis tool for experimentalists. Curr Protoc Mol Biol 2010;89(1):19.10.1–21.

[26] Xia J, Wishart DS. Using MetaboAnalyst 3.0 for comprehensive metabolomics data analysis. Curr Protoc Bioinformatics 2016;55:14.10.1–91.

[27] Chong J, Liu P, Zhou G, Xia J. Using MicrobiomeAnalyst for comprehensive statistical, functional, and meta-analysis of microbiome data. Nat Protoc 2020;15(3):799–821. 链接1

[28] Dhariwal A, Chong J, Habib S, King IL, Agellon LB, Xia J. MicrobiomeAnalyst—a web-based tool for comprehensive statistical, visual and meta-analysis of microbiome data. Nucleic Acids Res 2017;45(W1):W180–8. 链接1

[29] Talayero BG, Sacks FM. The role of triglycerides in atherosclerosis. Curr Cardiol Rep 2011;13(6):544–52. 链接1

[30] Norhammar A, Malmberg K, Diderholm E, Lagerqvist B, Lindahl B, Rydén L, et al. Diabetes mellitus: the major risk factor in unstable coronary artery disease even after consideration of the extent of coronary artery disease and benefits of revascularization. J Am Coll Cardiol 2004;43(4):585–91. 链接1

[31] Arumugam M, Raes J, Pelletier E, Le Paslier D, Yamada T, Mende DR, et al. Enterotypes of the human gut microbiome. Nature 2011;473(7346): 174–80. 链接1

[32] Wu GD, Chen J, Hoffmann C, Bittinger K, Chen Y, Keilbaugh SA, et al. Linking long-term dietary patterns with gut microbial enterotypes. Science 2011;334 (6052):105–8. 链接1

[33] Koliada A, Syzenko G, Moseiko V, Budovska L, Puchkov K, Perederiy V, et al. Association between body mass index and Firmicutes/Bacteroidetes ratio in an adult Ukrainian population. BMC Microbiol 2017;17:120. 链接1

[34] Wilson PW, Castelli WP, Kannel WB. Coronary risk prediction in adults (The Framingham Heart Study). Am J Cardiol 1987;59(14). G91–4. 链接1

[35] Sarnak MJ, Levey AS, Schoolwerth AC, Coresh J, Culleton B, Hamm LL, et al. Kidney disease as a risk factor for development of cardiovascular disease: a statement from the American Heart Association Councils on Kidney in Cardiovascular Disease, High Blood Pressure Research, Clinical Cardiology, and Epidemiology and Prevention. Circulation 2003;108(17):2154–69. 链接1

[36] Jie Z, Xia H, Zhong SL, Feng Q, Li S, Liang S, et al. The gut microbiome in atherosclerotic cardiovascular disease. Nat Commun 2017;8(1):845. 链接1

[37] Yin J, Liao SX, He Y, Wang S, Xia GH, Liu FT, et al. Dysbiosis of gut microbiota with reduced trimethylamine-N-oxide level in patients with large-artery atherosclerotic stroke or transient ischemic attack. J Am Heart Assoc 2015;4 (11):e002699. 链接1

[38] Karlsson FH, Fåk F, Nookaew I, Tremaroli V, Fagerberg B, Petranovic D, et al. Symptomatic atherosclerosis is associated with an altered gut metagenome. Nat Commun 2012;3:1245. 链接1

[39] Kasahara K, Krautkramer KA, Org E, Romano KA, Kerby RL, Vivas EI, et al. Interactions between Roseburia intestinalis and diet modulate atherogenesis in a murine model. Nat Microbiol 2018;3(12):1461–71. 链接1

[40] de Moraes AC, Fernandes GR, da Silva IT, Almeida-Pititto B, Gomes EP, Pereira AD, et al. Enterotype may drive the dietary-associated cardiometabolic risk factors. Front Cell Infect Microbiol 2017;7:47. 链接1

[41] Glick-Bauer M, Yeh MC. The health advantage of a vegan diet: exploring the gut microbiota connection. Nutrients 2014;6(11):4822–38. 链接1

[42] De Filippis F, Pellegrini N, Laghi L, Gobbetti M, Ercolini D. Unusual sub-genus associations of faecal Prevotella and Bacteroides with specific dietary patterns. Microbiome 2016;4(1):57. 链接1

[43] Stock J. Gut microbiota: an environmental risk factor for cardiovascular disease. Atherosclerosis 2013;229(2):440–2. 链接1

[44] Tang WH, Wang Z, Levison BS, Koeth RA, Britt EB, Fu X, et al. Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. N Engl J Med 2013;368(17):1575–84. 链接1

[45] Wang Z, Roberts AB, Buffa JA, Levison BS, Zhu W, Org E, et al. Non-lethal inhibition of gut microbial trimethylamine production for the treatment of atherosclerosis. Cell 2015;163(7):1585–95. 链接1

[46] Yamashita T. Intestinal immunity and gut microbiota in atherogenesis. J Atheroscler Thromb 2017;24(2):110–9. 链接1

[47] Makarova K, Slesarev A, Wolf Y, Sorokin A, Mirkin B, Koonin E, et al. Comparative genomics of the lactic acid bacteria. Proc Natl Acad Sci USA 2006;103(42):15611–6. 链接1

[48] Giuliano C, Khan AW. Conversion of cellulose to sugars by resting cells of a mesophilic anaerobe Bacteriodes cellulosolvens. Biotechnol Bioeng 1985;27 (7):980–3. 链接1

[49] Kasubuchi M, Hasegawa S, Hiramatsu T, Ichimura A, Kimura I. Dietary gut microbial metabolites, short-chain fatty acids, and host metabolic regulation. Nutrients 2015;7(4):2839–49. 链接1

[50] Pluznick JL, Protzko RJ, Gevorgyan H, Peterlin Z, Sipos A, Han J, et al. Olfactory receptor responding to gut microbiota-derived signals plays a role in renin secretion and blood pressure regulation. Proc Natl Acad Sci USA 2013;110 (11):4410–5. 链接1

[51] Pluznick J. A novel SCFA receptor, the microbiota, and blood pressure regulation. Gut Microbes 2014;5(2):202–7. 链接1

[52] Allen-Vercoe E, Strauss J, Chadee K. Fusobacterium nucleatum: an emerging gut pathogen? Gut Microbes 2011;2(5):294–8. 链接1

[53] Han YW, Ikegami A, Rajanna C, Kawsar HI, Zhou Y, Li M, et al. Identification and characterization of a novel adhesin unique to oral Fusobacteria. J Bacteriol 2005;187(15):5330–40. 链接1

[54] Velsko IM, Chukkapalli SS, Rivera-Kweh MF, Chen H, Zheng D, Bhattacharyya I, et al. Fusobacterium nucleatum alters atherosclerosis risk factors and enhances inflammatory markers with an atheroprotective immune response in ApoE (null) mice. PLoS ONE 2015;10(6):e0129795. 链接1

[55] David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature 2014;505(7484):559–63. 链接1

[56] Miller TW, Wang EA, Gould S, Stein EV, Kaur S, Lim L, et al. Hydrogen sulfide is an endogenous potentiator of T cell activation. J Biol Chem 2012;287 (6):4211–21. 链接1

[57] Pitcher MC, Cummings JH. Hydrogen sulphide: a bacterial toxin in ulcerative colitis? Gut 1996;39(1):1–4. 链接1

[58] Jiang H, Ling Z, Zhang Y, Mao H, Ma Z, Yin Y, et al. Altered fecal microbiota composition in patients with major depressive disorder. Brain Behav Immun 2015;48:186–94. 链接1

[59] Nakayama J, Yamamoto A, Palermo-Conde LA, Higashi K, Sonomoto K, Tan J, et al. Impact of westernized diet on gut microbiota in children on Leyte Island. Front Microbiol 2017;8:197. 链接1

[60] Heinritz SN, Weiss E, Eklund M, Aumiller T, Louis S, Rings A, et al. Intestinal microbiota and microbial metabolites are changed in a pig model fed a highfat/low-fiber or a low-fat/high-fiber diet. PLoS ONE 2016;11(4):e0154329. 链接1

[61] Serena C, Ceperuelo-Mallafre V, Keiran N, Queipo-Ortuño MI, Bernal R, GomezHuelgas R, et al. Elevated circulating levels of succinate in human obesity are linked to specific gut microbiota. ISME J 2018;12(7):1642–57. 链接1

[62] Scheperjans F, Aho V, Pereira PA, Koskinen K, Paulin L, Pekkonen E, et al. Gut microbiota are related to Parkinson’s disease and clinical phenotype. Mov Disord 2015;30(3):350–8. 链接1

[63] London LE, Kumar AH, Wall R, Casey PG, O’Sullivan O, Shanahan F, et al. Exopolysaccharide-producing probiotic Lactobacilli reduce serum cholesterol and modify enteric microbiota in ApoE-deficient mice. J Nutr 2014;144 (12):1956–62. 链接1

[64] Vaziri ND, Wong J, Pahl M, Piceno YM, Yuan J, DeSantis TZ, et al. Chronic kidney disease alters intestinal microbial flora. Kidney Int 2013;83(2):308–15. 链接1

[65] Unger MM, Spiegel J, Dillmann KU, Grundmann D, Philippeit H, Bürmann J, et al. Short chain fatty acids and gut microbiota differ between patients with Parkinson’s disease and age-matched controls. Parkinsonism Relat Disord 2016;32:66–72. 链接1

[66] Jeffery ND, Barker AK, Alcott CJ, Levine JM, Meren I, Wengert J, et al. The association of specific constituents of the fecal microbiota with immunemediated brain disease in dogs. PLoS ONE 2017;12(1):e0170589. 链接1

[67] Zhang X, Wang H, Yin P, Fan H, Sun L, Liu Y. Flaxseed oil ameliorates alcoholic liver disease via anti-inflammation and modulating gut microbiota in mice. Lipids Health Dis 2017;16:44. 链接1

[68] Ishioka M, Miura K, Minami S, Shimura Y, Ohnishi H. Altered gut microbiota composition and immune response in experimental steatohepatitis mouse models. Dig Dis Sci 2017;62(2):396–406. 链接1

[69] Chen J, Chia N, Kalari KR, Yao JZ, Novotna M, Paz Soldan MM, et al. Multiple sclerosis patients have a distinct gut microbiota compared to healthy controls. Sci Rep 2016;6:28484. 链接1

[70] Matziouridou C, Marungruang N, Nguyen TD, Nyman M, Fak F. Lingonberries reduce atherosclerosis in Apoe(–/–) mice in association with altered gut microbiota composition and improved lipid profile. Mol Nutr Food Res 2016;60(5):1150–60. 链接1

[71] Li W, Zhang K, Yang H. Pectin alleviates high fat (lard) diet-induced nonalcoholic fatty liver disease in mice: possible role of short-chain fatty acids and gut microbiota regulated by pectin. J Agric Food Chem 2018;66(30):8015–25. 链接1

相关研究