期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2020年 第6卷 第8期 doi: 10.1016/j.eng.2020.06.012

大而复杂形变区域中的精确三维形变反演——基于偏移的相位解缠和改进的多孔径SAR干涉测量集成技术在2016年熊本地震中的应用

Department of Geoinformatics, University of Seoul, Seoul 02504, Korea 

收稿日期: 2018-10-20 修回日期: 2020-04-16 录用日期: 2020-06-29 发布日期: 2020-07-03

下一篇 上一篇

摘要

常规合成孔径雷达(synthetic aperture radar, SAR)干涉测量(InSAR)已成功用于精确测量雷达视线(line-of-sight, LOS)方向上的表面形变,而多孔径SAR干涉技术(multiple-aperture SAR interferometry, MAI)可以用于精确测量沿轨迹(along-track, AT)方向的表面形变。InSAR和MAI方法的集成可以精确测量干涉对中的二维(two-dimensional, 2D)形变;最近,升降轨联合解算使得人们可以观测到精确的三维(three-dimensional, 3D)形变。精确的3D形变测量已用于更好地了解地质事件,如地震和火山喷发。与2016年熊本地震有关的地表形变在断层线附近较大且复杂,因此精确的3D形变反演尚未展开。本研究的目的是:①通过对基于偏移的相位解缠和改进的多孔径SAR干涉图进行集成,在大而复杂的形变区域中进行精确3D形变反演的可行性测试;②观测与2016年熊本地震有关的甚至包含断层线附近的3D形变场。3D形变反演使用了两组升轨对和一组高级陆地观测卫星2(Advanced Land Observing Satellite-2, ALOS-2)相控阵型L波段合成孔径雷达2(Phased Array-type L-band Synthetic Aperture Radar-2, PALSAR-2)降轨干涉对。11个原位全球定位系统(global positioning system, GPS)测站的观测被用于验证3D形变的测量精度。3D形变测量在东、北和垂直方向上分别达到大约2.96 cm、3.75 cm和2.86 cm的精度。结果表明,即使在形变大而复杂的情况下,通过集成改进方法来测量精确的3D形变仍具有可行性。

图片

图1

图2

图3

图4

图5

图6

图7

图8

图9

图10

参考文献

[ 1 ] Biggs J, Amelung F, Gourmelen N, Dixon TH, Kim SW. InSAR observations of 2007 Tanzania rifting episode reveal mixed fault and dyke extension in an immature continental rift. Geophys J Int 2009;179(1):549–58. 链接1

[ 2 ] Wei M, Sandwell D, Fialko Y, Bilham R. Slip on faults in the Imperial Valley triggered by the 4 April 2010 Mw 7.2 El Mayor–Cucapah earthquake revealed by InSAR. Geophys Res Lett 2011;38(1):L01308. 链接1

[ 3 ] Jung HS, Hong SM. Mapping three-dimensional surface deformation caused by the 2010 Haiti earthquake using advanced satellite radar interferometry. PLoS ONE 2017;12(11):e0188286. 链接1

[ 4 ] Jo MJ, Jung HS, Yun SH. Retrieving precise three-dimensional deformation on the 2014 M6.0 South Napa earthquake by joint inversion of multi-sensor SAR. Sci Rep 2017;7(1):5485. 链接1

[ 5 ] Jo MJ, Jung HS, Chae SH. Advances in three-dimensional deformation mapping from satellite radar observations: application to the 2003 Bam earthquake. Geomatics Nat Hazards Risk 2018;9(1):678–90. 链接1

[ 6 ] Lee WJ, Lu Z, Jung HS, Ji L. Measurement of small co-seismic deformation field from multi-temporal SAR interferometry: application to the 19 September 2004 Huntoon Valley earthquake. Geomatics Nat Hazards Risk 2017;8 (2):1241–57. 链接1

[ 7 ] Lu Z, Dzurisin D, Biggs J, Wicks C Jr, McNutt S. Ground surface deformation patterns, magma supply, and magma storage at Okmok volcano, Alaska, from InSAR analysis: 1. intereruption deformation, 1997–2008. J Geophys Res 2010;115:B00B02. 链接1

[ 8 ] Jung HS, Lu Z, Won JS, Poland MP, Miklius A. Mapping three-dimensional surface deformation by combining multiple-aperture interferometry and conventional interferometry: application to the June 2007 eruption of Kilauea volcano, Hawaii. IEEE Geosci Remote Sens Lett 2011;8(1):34–8. 链接1

[ 9 ] Jo MJ, Jung HS, Won JS. Measurement of precise three-dimensional volcanic deformations via TerraSAR-X synthetic aperture radar interferometry. Remote Sens Environ 2017;192:228–37. 链接1

[10] Lee WJ, Lu Z, Jung HS, Park SC, Lee DK. Using a refined SBAS algorithm to determine surface deformation in the Long Valley caldera and its surroundings from 2003–2010. Korean J Remote Sens 2018;34(1):101–15. 链接1

[11] Qu F, Lu Z, Poland M, Freymueller J, Zhang Q, Jung HS. Post-eruptive inflation of Okmok volcano, Alaska, from InSAR, 2008–2014. Remote Sens 2015;7 (12):16778–94. 链接1

[12] Gray L. Using multiple RADARSAT InSAR pairs to estimate a full threedimensional solution for glacial ice movement. Geophys Res Lett 2011;38(5): L05502. 链接1

[13] Chae SH, Lee WJ, Jung HS, Zhang L. Ionospheric correction of L-band SAR offset measurements for the precise observation of glacier velocity variations on Novaya Zemlya. IEEE J Sel Top Appl Earth Obs Remote Sens 2017;10 (8):3591–603. 链接1

[14] Boncori JPM, Andersen ML, Dall J, Kusk A, Kamstra M, Andersen SB, et al. Intercomparison and validation of SAR-based ice velocity measurement techniques within the Greenland ice sheet CCI project. Remote Sens 2018;10 (6):929. 链接1

[15] Baek WK, Jung HS, Chae SH, Lee WJ. Two-dimensional velocity measurements of Uvêrsbreen glacier in Svalbard using TerraSAR-X offset tracking approach. Korean J Remote Sens 2018;34(3):495–506. 链接1

[16] Choi JK, Won JS, Lee S, Kim SW, Kim KD, Jung HS. Integration of a subsidence model and SAR interferometry for a coal mine subsidence hazard map in Taebaek, Korea. Int J Remote Sens 2011;32(23):8161–81. 链接1

[17] Zhang L, Ding X, Lu Z, Jung HS, Hu J, Feng G. A novel multi-temporal InSAR model for joint estimation of deformation rates and orbital errors. IEEE Trans Geosci Remote Sens 2014;52(6):3529–40. 链接1

[18] Choi JH, Kim SW. Comparison of observation performance of urban displacement using ALOS-1 L-band PALSAR and COSMO-SkyMed X-band SAR time series images. Korean J Remote Sens 2018;34(2):283–93. 链接1

[19] Baek WK, Jung HS, Jo MJ, Lee WJ, Zhang L. Ground subsidence observation of solid waste landfill park using multi-temporal radar interferometry. Int J Urban Sci 2019;23(3):406–21. 链接1

[20] Lu Z, Kwoun O. Radarsat-1 and ERS InSAR analysis over southeastern coastal Louisiana: implications for mapping water-level changes beneath swamp forests. IEEE Trans Geosci Remote Sens 2008;46(8):2167–84. 链接1

[21] Hong SH, Wdowinski S. A review on monitoring the Everglades wetlands in the southern Florida using space-based synthetic aperture radar (SAR) observations. Korean J Remote Sens 2017;33(4):377–90. 链接1

[22] Bechor NBD, Zebker HA. Measuring two-dimensional movements using a single InSAR pair. Geophys Res Lett 2006;33(16):L16311. 链接1

[23] Jung HS, Won JS, Kim SW. An improvement of the performance of multipleaperture SAR interferometry (MAI). IEEE Trans Geosci Remote Sens 2009;47 (8):2859–69. 链接1

[24] Jung HS, Lu Z, Zhang L. Feasibility of along-track displacement measurement from Sentinel-1 interferometric wide-swath mode. IEEE Trans Geosci Remote Sens 2013;51(1):573–8. 链接1

[25] Jung HS, Lee WJ, Zhang L. Theoretical accuracy of along-track displacement measurements from multiple-aperture interferometry (MAI). Sensors 2014;14 (9):17703–24. 链接1

[26] Jung HS, Yun SH, Jo MJ. An improvement of multiple-aperture SAR interferometry performance in the presence of complex and large line-of-sight deformation. IEEE J Sel Top Appl Earth Obs Remote Sens 2015;8(4):1743–52. 链接1

[27] Jung HS, Lu Z, Shepherd A, Wright T. Simulation of the SuperSAR multiazimuth synthetic aperture radar imaging system for precise measurement of three-dimensional Earth surface displacement. IEEE Trans Geosci Remote Sens 2015;53(11):6196–206. 链接1

[28] Jo MJ, Jung HS, Won JS, Poland MP, Miklius A, Lu Z. Measurement of slowmoving along-track displacement from an efficient multiple-aperture SAR interferometry (MAI) stacking. J Geod 2015;89(5):411–25. 链接1

[29] Jo MJ, Jung HS, Won JS, Lundgren P. Measurement of three-dimensional surface deformation by COSMO-SkyMed X-band radar interferometry: application to the March 2011 Kamoamoa fissure eruption, Kılauea volcano, Hawai’i. Remote Sens Environ 2015;169:176–91. 链接1

[30] Jo MJ, Jung HS, Won JS. Detecting the source location of recent summit inflation via three-dimensional InSAR observation of Kılauea volcano. Remote Sens 2015;7(11):14386–402. 链接1

[31] Morishita Y, Kobayashi T, Yarai H. Three-dimensional deformation mapping of a dike intrusion event in Sakurajima in 2015 by exploiting the right- and leftlooking ALOS-2 InSAR. Geophys Res Lett 2016;43(9):4197–204. 链接1

[32] Hu J, Ding XL, Zhang L, Sun Q, Li ZW, Zhu JJ, et al. Estimation of 3-D surface displacement based on InSAR and deformation modeling. IEEE Trans Geosci Remote Sens 2017;55(4):2007–16. 链接1

[33] Hu J, Li ZW, Ding XL, Zhu JJ, Zhang L, Sun Q. 3D coseismic displacement of 2010 Darfield, New Zealand earthquake estimated from multi-aperture InSAR and D-InSAR measurements. J Geod 2012;86(11):1029–41. 链接1

[34] Boncori JPM, Papoutsis I, Pezzo G, Tolomei C, Atzori S, Ganas A, et al. The February 2014 Cephalonia earthquake (Greece): 3D deformation field and source modeling from multiple SAR techniques. Seismol Res Lett 2014;86(1):1–14. 链接1

[35] Wang X, Liu G, Yu B, Dai K, Zhang R, Chen Q, et al. 3D coseismic deformations and source parameters of the 2010 Yushu earthquake (China) inferred from DInSAR and multiple-aperture InSAR measurements. Remote Sens Environ 2014;152:174–89. 链接1

[36] Wang X, Liu G, Yu B, Dai K, Zhang R, Ma D, et al. An integrated method based on DInSAR, MAI and displacement gradient tensor for mapping the 3D coseismic deformation field related to the 2011 Tarlay earthquake (Myanmar). Remote Sens Environ 2015;170:388–404. 链接1

[37] Grandin R, Klein E, Métois M, Vigny C. Three-dimensional displacement field of the 2015 Mw 8.3 Illapel earthquake (Chile) from across- and along-track Sentinel-1 TOPS interferometry. Geophys Res Lett 2016;43 (6):2552–61. 链接1

[38] Hu J, Li ZW, Li J, Zhang L, Ding XL, Zhu JJ, et al. 3-D movement mapping of the alpine glacier in Qinghai–Tibetan Plateau by integrating D-InSAR, MAI and offset-tracking: case study of the Dongkemadi glacier. Global Planet Change 2014;118:62–8. 链接1

[39] Gourmelen N, Kim SW, Shepherd A, Park JW, Sundal AV, Björnsson H, et al. Ice velocity determined using conventional and multiple-aperture InSAR. Earth Planet Sci Lett 2011;307(1–2):156–60. 链接1

[40] Himematsu Y, Furuya M. Fault source model for the 2016 Kumamoto earthquake sequence based on ALOS-2/PALSAR-2 pixel-offset data: evidence for dynamic slip partitioning. Earth Planets Space 2016;68(1):169. 链接1

[41] Baek WK, Jung HS, Chae SH. Feasibility of ALOS2 PALSAR2 offset-based phase unwrapping of SAR interferogram in large and complex surface deformations. IEEE Access 2018;6:45951–60. 链接1

[42] Chae SH, Lee WJ, Baek WK, Jung HS. An improvement of the performance of SAR offset tracking approach to measure optimal surface displacements. IEEE Access 2019;7:131627–37. 链接1

[43] Wright TJ, Parsons BE, Lu Z. Toward mapping surface deformation in three dimensions using InSAR. Geophys Res Lett 2004;31(1):L01607. 链接1

[44] Baek WK, Jung HS, Chae SH. Precise three-dimensional mapping of the 2016 Kumamoto earthquake through the integration of SAR interferometry and offset tracking. In: Proceedings of the 2017 IEEE International Geoscience and Remote Sensing Symposium; 2017 Jul 23–28; Fort Worth, TX, USA. New York: IEEE; 2017. p. 3822–3. 链接1

[45] Costantini M. A novel phase unwrapping method based on network programming. IEEE Trans Geosci Remote Sens 1998;36(3):813–21. 链接1

[46] Baek WK, Jung HS. Precise measurements of the along-track surface deformation related to the 2016 Kumamoto earthquakes via ionospheric correction of multiple-aperture SAR interferograms. Korean J Remote Sens 2018;34(6):1489–501. 链接1

[47] Lee WJ, Jung HS, Chae SH, Baek WK. Enhancement of ionospheric correction method based on multiple aperture interferometry. Korean J Remote Sens 2015;31(2):101–10. 链接1

[48] Zebker HA, Villasenor J. Decorrelation in interferometric radar echoes. IEEE Trans Geosci Remote Sens 1992;30(5):950–9. 链接1

相关研究