期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2021年 第7卷 第1期 doi: 10.1016/j.eng.2020.06.023

Pd催化乙炔半加氢反应载体效应的结构根源和动力学分析

a State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
b Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China

# These authors contributed equally to this work.

收稿日期: 2019-12-22 修回日期: 2020-06-03 录用日期: 2020-06-19 发布日期: 2020-11-25

下一篇 上一篇

摘要

本文从催化剂微结构和动力学角度,认识和理解碳纳米管和α-Al2O3负载Pd催化乙炔半加氢反应的载体效应。动力学分析、XPS、H2-TPR、TPHD和原位XRD研究结果表明:与α-Al2O3相比,碳纳米管作为载体降低了催化剂Pd0 3d的电子结合能且抑制了氢化钯物种的形成,从而显著提高了目标产物乙烯的收率。进一步结合XAS、HRTEM、C2H4-TPD和DFT计算,发现碳纳米管负载的催化剂中Pd纳米颗粒次表面存在碳原子,这种独特的局域环境能显著弱化目标产物乙烯的吸附,有利于乙炔半加氢反应的发生。这些研究结果预示着调变Pd催化剂的局域环境和电子性质是一种构筑乙炔半加氢Pd催化剂的有效策略。

图片

图1

图2

图3

图4

图5

参考文献

[ 1 ] Borodzin´ ski A, Bond GC. Selective hydrogenation of ethyne in ethene-rich streams on palladium catalysts. Part 1. Effect of changes to the catalyst during reaction. Catal Rev 2006;48(2):91–144. 链接1

[ 2 ] Studt F, Abild-Pedersen F, Bligaard T, Sørensen RZ, Christensen CH, Nørskov JK. Identification of non-precious metal alloy catalysts for selective hydrogenation of acetylene. Science 2008;320(5881):1320–2. 链接1

[ 3 ] Teschner D, Borsodi J, Wootsch A, Révay Z, Hävecker M, Knop-Gericke A, et al. The roles of subsurface carbon and hydrogen in palladium-catalyzed alkyne hydrogenation. Science 2008;320(5872):86–9. 链接1

[ 4 ] Crespo-Quesada M, Cárdenas-Lizana F, Dessimoz AL, Kiwi-Minsker L. Modern trends in catalyst and process design for alkyne hydrogenations. ACS Catal 2012;2(8):1773–86. 链接1

[ 5 ] Sárkány A, Weiss AH, Guczi L. Structure sensitivity of acetylene–ethylene hydrogenation over Pd catalysts. J Catal 1986;98(2):550–3. 链接1

[ 6 ] Ruta M, Semagina N, Kiwi-Minsker L. Monodispersed Pd nanoparticles for acetylene selective hydrogenation: particle size and support effects. J Phys Chem C 2008;112(35):13635–41. 链接1

[ 7 ] Bauer M, Schoch R, Shao L, Zhang B, Knop-Gericke A, Willinger M, et al. Structure–activity studies on highly active palladium hydrogenation catalysts by X-ray absorption spectroscopy. J Phys Chem C 2012;116(42):22375–85. 链接1

[ 8 ] Cao Y, Fu W, Sui Z, Duan X, Chen D, Zhou X. Kinetics insights and active sites discrimination of Pd-catalyzed selective hydrogenation of acetylene. Ind Eng Chem Res 2019;58(5):1888–95. 链接1

[ 9 ] He Y, Fan J, Feng J, Luo C, Yang P, Li D. Pd nanoparticles on hydrotalcite as an efficient catalyst for partial hydrogenation of acetylene: effect of support acidic and basic properties. J Catal 2015;331:118–27. 链接1

[10] Komeili S, Ravanchi MT, Taeb A. The influence of alumina phases on the performance of the Pd–Ag/Al2O3 catalyst in tail-end selective hydrogenation of acetylene. Appl Catal A Gen 2015;502:287–96. 链接1

[11] McCue AJ, Anderson JA. Recent advances in selective acetylene hydrogenation using palladium containing catalysts. Front Chem Sci Eng 2015;9(2):142–53. 链接1

[12] Riyapan S, Boonyongmaneerat Y, Mekasuwandumrong O, Praserthdam P, Panpranot J. Effect of surface Ti3+ on the sol–gel derived TiO2 in the selective acetylene hydrogenation on Pd/TiO2 catalysts. Catal Today 2015;245:134–8. 链接1

[13] Ravanchi MT, Sahebdelfar S, Komeili S. Acetylene selective hydrogenation: a technical review on catalytic aspects. Rev Chem Eng 2018;34(2):215–37. 链接1

[14] Borodzin´ ski A, Cybulski A. The kinetic model of hydrogenation of acetylene– ethylene mixtures over palladium surface covered by carbonaceous deposits. Appl Catal A Gen 2000;198(1–2):51–66. 链接1

[15] Zhang J, Sui ZJ, Zhu YA, Chen D, Zhou XG, Yuan WK. Composition of the green oil in hydrogenation of acetylene over a commercial Pd–Ag/Al2O3 catalyst. Chem Eng Technol 2016;39(5):865–73. 链接1

[16] Esmaeili E, Rashidi AM, Mortazavi Y, Khodadadi AA, Rashidzadeh M. SMFssupported Pd nanocatalysts in selective acetylene hydrogenation: pore structuredependent deactivation mechanism. J Energy Chem 2013;22(5):717–25. 链接1

[17] Cao Y, Sui Z, Zhu Y, Zhou X, Chen D. Selective hydrogenation of acetylene over Pd–In/Al2O3 catalyst: promotional effect of indium and compositiondependent performance. ACS Catal 2017;7(11):7835–46. 链接1

[18] Chen W, Ji J, Duan X, Qian G, Li P, Zhou X, et al. Unique reactivity in Pt/CNT catalyzed hydrolytic dehydrogenation of ammonia borane. Chem Commun 2014;50(17):2142–4. 链接1

[19] Zhu J, Holmen A, Chen D. Carbon nanomaterials in catalysis: proton affinity, chemical and electronic properties, and their catalytic consequences. Chem Cat Chem 2013;5(2):378–401. 链接1

[20] Su DS, Perathoner S, Centi G. Nanocarbons for the development of advanced catalysts. Chem Rev 2013;113(8):5782–816. 链接1

[21] Ravel B, Newville M. ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J Synchrotron Rad 2005;12(4):537–41. 链接1

[22] Newville M. IFEFFIT: interactive XAFS analysis and FEFF fitting. J Synchrotron Rad 2001;8(2):322–4. 链接1

[23] Blöchl PE. Projector augmented-wave method. Phys Rev B 1994;50 (24):17953–79. 链接1

[24] Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett 1996;77(18):3865–8. 链接1

[25] Monkhorst HJ, Pack JD. Special points for brillouin-zone integrations. Phys Rev B 1976;13(12):5188–92. 链接1

[26] Henkelman G, Jónsson H. A dimer method for finding saddle points on high dimensional potential surfaces using only first derivatives. J Chem Phys 1999;111(15):7010–22. 链接1

[27] Tang W, Sanville E, Henkelman G. A grid-based bader analysis algorithm without lattice bias. J Phys Condens Matter 2009;21(8):084204. 链接1

[28] Yang B, Burch R, Hardacre C, Headdock G, Hu P. Influence of surface structures, subsurface carbon and hydrogen, and surface alloying on the activity and selectivity of acetylene hydrogenation on Pd surfaces: a density functional theory study. J Catal 2013;305:264–76. 链接1

[29] Chen S, Meng L, Chen B, Chen W, Duan X, Huang X, et al. Poison tolerance to the selective hydrogenation of cinnamaldehyde in water over an ordered mesoporous carbonaceous composite supported Pd catalyst. ACS Catal 2017;7 (3):2074–87. 链接1

[30] Ellis IT, Wolf EH, Jones G, Lo B, Li MMJ, York APE, et al. Lithium and boron as interstitial palladium dopants for catalytic partial hydrogenation of acetylene. Chem Commun 2017;53(3):601–4. 链接1

[31] Pei GX, Liu XY, Wang AQ, Lee AF, Isaacs MA, Li L, et al. Ag alloyed Pd singleatom catalysts for efficient selective hydrogenation of acetylene to ethylene in excess ethylene. ACS Catal 2015;5(6):3717–25. 链接1

[32] He Y, Liang L, Liu Y, Feng J, Ma C, Li D. Partial hydrogenation of acetylene using highly stable dispersed bimetallic Pd–Ga/MgO–Al2O3 catalyst. J Catal 2014;309:166–73. 链接1

[33] Borodzin´ ski A, Bond GC. Selective hydrogenation of ethyne in ethene-rich streams on palladium catalysts, part 2: steady-state kinetics and effects of palladium particle size, carbon monoxide, and promoters. Catal Rev 2008;50 (3):379–469. 链接1

[34] Menezes WG, Altmann L, Zielasek V, Thiel K, Bäumer M. Bimetallic Co–Pd catalysts: study of preparation methods and their influence on the selective hydrogenation of acetylene. J Catal 2013;300:125–35. 链接1

[35] Tew MW, Janousch M, Huthwelker T, van Bokhoven JA. The roles of carbide and hydride in oxide-supported palladium nanoparticles for alkyne hydrogenation. J Catal 2011;283(1):45–54. 链接1

[36] García-Mota M, Bridier B, Pérez-Ramírez J, López N. Interplay between carbon monoxide, hydrides, and carbides in selective alkyne hydrogenation on palladium. J Catal 2010;273(2):92–102. 链接1

[37] Newbatt PH, Sermon PA, Luengo MAM. Rate of hydrogen sorption by welldispersed palladium. Z Phys Chem 1986;147(1–2):105–14. 链接1

[38] Bonarowska M, Pielaszek J, Juszczyk W, Karpin´ ski Z. Characterization of Pd– Au/SiO2 catalysts by X-ray diffraction, temperature-programmed hydride decomposition, and catalytic probes. J Catal 2000;195(2):304–15. 链接1

[39] Nag NK. A study on the formation of palladium hydride in a carbon-supported palladium catalyst. J Phys Chem B 2001;105(25):5945–9. 链接1

[40] Bhat VV, Contescu CI, Gallego NC. The role of destabilization of palladium hydride in the hydrogen uptake of Pd-containing activated carbons. Nanotechnology 2009;20(20):204011. 链接1

[41] McCue AJ, McRitchie CJ, Shepherd AM, Anderson JA. Cu/Al2O3 catalysts modified with Pd for selective acetylene hydrogenation. J Catal 2014;319:127–35. 链接1

[42] Sá J, Arteaga GD, Daley RA, Bernardi J, Anderson JA. Factors influencing hydride formation in a Pd/TiO2 catalyst. J Phys Chem B 2006;110(34):17090–5. 链接1

[43] Niu Y, Liu X, Wang Y, Zhou S, Lv Z, Zhang L, et al. Visualizing formation of intermetallic PdZn in a palladium/zinc oxide catalyst: interfacial fertilization by PdHx. Angew Chem Int Ed 2019;58(13):4232–7. 链接1

[44] Crespo-Quesada M, Yoon S, Jin M, Prestianni A, Cortese R, Cárdenas-Lizana F, et al. Shape-dependence of Pd nanocrystal carburization during acetylene hydrogenation. J Phys Chem C 2015;119(2):1101–7. 链接1

[45] Vogel W, He W, Huang QH, Zou ZQ, Zhang XG, Yang H. Palladium nanoparticles ‘‘breathe” hydrogen; a surgical view with X-ray diffraction. Int J Hydrogen Energy 2010;35(16):8609–20. 链接1

[46] Benavidez AD, Burton PD, Nogales JL, Jenkins AR, Ivanov SA, Miller JT, et al. Improved selectivity of carbon-supported palladium catalysts for the hydrogenation of acetylene in excess ethylene. Appl Catal A Gen 2014;482:108–15. 链接1

[47] Bugaev AL, Usoltsev OA, Guda AA, Lomachenko KA, Pankin IA, Rusalev YV, et al. Palladium carbide and hydride formation in the bulk and at the surface of palladium nanoparticles. J Phys Chem C 2018;122(22):12029–37. 链接1

[48] Chesnokov VV, Podyacheva OY, Richards RM. Influence of carbon nanomaterials on the properties of Pd/C catalysts in selective hydrogenation of acetylene. Mater Res Bull 2017;88(Suppl C):78–84. 链接1

[49] Rehr JJ, Albers RC. Theoretical approaches to X-ray absorption fine structure. Rev Mod Phys 2000;72(3):621–54. 链接1

[50] Frenkel AI, Yevick A, Cooper C, Vasic R. Modeling the structure and composition of nanoparticles by extended X-ray absorption fine-structure spectroscopy. Annu Rev Anal Chem 2011;4(1):23–39. 链接1

[51] Frenkel AI. Applications of extended X-ray absorption fine-structure spectroscopy to studies of bimetallic nanoparticle catalysts. Chem Soc Rev 2012;41(24):8163–78. 链接1

[52] Canton P, Meneghini C, Riello P, Balerna A, Benedetti A. Thermal evolution of carbon-supported Pd nanoparticles studied by time-resolved X-ray diffraction. J Phys Chem B 2001;105(34):8088–91. 链接1

[53] Vogel W. Interaction of a nanosized Pd catalyst with active C from the carbon support: an advanced in situ XRD study. J Phys Chem C 2011;115 (5):1506–12. 链接1

[54] Chen M, Goodman DW. Promotional effects of Au in Pd-Au catalysts for vinyl acetate synthesis. Chin J Catal 2008;29(11):1178–86. 链接1

相关研究