期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2021年 第7卷 第1期 doi: 10.1016/j.eng.2020.06.025

电化学微反应技术的工程研究进展——一种新型有机化合物电合成方法

State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China

收稿日期: 2019-11-16 修回日期: 2020-05-31 录用日期: 2020-06-19 发布日期: 2020-12-08

下一篇 上一篇

摘要

电化学方法环境友好,在有机化学合成中具有独特的优势。然而,传统的电化学反应器存在复杂的传递问题,限制了电化学方法的应用。近年来,微反应技术在电合成研究中的应用缩短了离子的传递距离并增加了电极的比表面积,从而促成了高效、连续且易于规模化的电合成技术。本文从过程强化的角度讨论了在电合成中使用微通道的工程优势,分析了最近报道的电化学微反应器中的流型和传质行为,并列举了反应器放大的典型例子。作为一个相对较新的研究领域,在微反应器中进行电合成的许多科学规则和工程特征都有待研究。因此本文提出了潜在的研究重点,认为其对新型电合成技术的发展至关重要。

图片

图1

图2

图3

图4

图5

图6

参考文献

[ 1 ] Walsh FC, Ponce de León C. Progress in electrochemical flow reactors for laboratory and pilot scale processing. Electrochim Acta 2018;280:121–48. 链接1

[ 2 ] Hardwick T, Ahmed N. Advances in electro- and sono-microreactors for chemical synthesis. RSC Adv 2018;8(39):22233–49. 链接1

[ 3 ] Xiang J, Shang M, Kawamata Y, Lundberg H, Reisberg SH, Chen M, et al. Hindered dialkyl ether synthesis with electrogenerated carbocations. Nature 2019;573(7774):398–402. 链接1

[ 4 ] Peters BK, Rodriguez KX, Reisberg SH, Beil SB, Hickey DP, Kawamata Y, et al. Scalable and safe synthetic organic electroreduction inspired by Li-ion battery chemistry. Science 2019;363(6429):838–45. 链接1

[ 5 ] Yoshida J, Suga S. Basic concepts of ‘‘cation pool” and ‘‘cation flow” methods and their applications in conventional and combinatorial organic synthesis. Chemistry 2002;33(40):289. 链接1

[ 6 ] Arai K, Watts K, Wirth T. Difluoro- and trifluoromethylation of electrondeficient alkenes in an electrochemical microreactor. ChemistryOpen 2014;3 (1):23–8. 链接1

[ 7 ] Atobe M, Tateno H, Matsumura Y. Applications of flow microreactors in electrosynthetic processes. Chem Rev 2018;118(9):4541–72. 链接1

[ 8 ] Kawamata Y, Yan M, Liu Z, Bao DH, Chen J, Starr JT, et al. Scalable, electrochemical oxidation of unactivated C–H bonds. J Am Chem Soc 2017;139(22):7448–51. 链接1

[ 9 ] Rosen BR, Werner EW, O’Brien AG, Baran PS. Total synthesis of dixiamycin B by electrochemical oxidation. J Am Chem Soc 2014;136(15):5571–4. 链接1

[10] Watts K, Gattrell W, Wirth T. A practical microreactor for electrochemistry in flow. Beilstein J Org Chem 2011;7:1108–14. 链接1

[11] Beck F, Guthke H. Development of new cells for electroorganic syntheses. Chemie Ingenieur Technik 1969;41(17):943–50. Germany. 链接1

[12] Pletcher D, Green RA, Brown RCD. Flow electrolysis cells for the synthetic organic chemistry laboratory. Chem Rev 2018;118(9):4573–91. 链接1

[13] Noël T, Cao Y, Laudadio G. The fundamentals behind the use of flow reactors in electrochemistry. Acc Chem Res 2019;52(10):2858–69. 链接1

[14] Qu Y, Tsuneishi C, Tateno H, Matsumura Y, Atobe M. Green synthesis of aamino acids by electrochemical carboxylation of imines in a flow microreactor. React Chem Eng 2017;2(6):871–5. 链接1

[15] Laudadio G, de Smet W, Struik L, Cao Y, Noël T. Design and application of a modular and scalable electrochemical flow microreactor. J Flow Chem 2018;8 (3–4):157–65. 链接1

[16] Wang D, Wang P, Wang S, Chen YH, Zhang H, Lei A. Direct electrochemical oxidation of alcohols with hydrogen evolution in continuous-flow reactor. Nat Commun 2019;10(1):2796. 链接1

[17] Ren S, Joulié D, Salvatore D, Torbensen K, Wang M, Robert M, et al. Molecular electrocatalysts can mediate fast, selective CO2 reduction in a flow cell. Science 2019;365(6451):367–9. 链接1

[18] Tateno H, Matsumura Y, Nakabayashi K, Senboku H, Atobe M. Development of a novel electrochemical carboxylation system using a microreactor. RSC Adv 2015;5(119):98721–3. 链接1

[19] Folgueiras-Amador AA, Qian XY, Xu HC, Wirth T. Catalyst- and supportingelectrolyte-free electrosynthesis of benzothiazoles and thiazolopyridines in continuous flow. Chemistry 2018;24(2):487–91. 链接1

[20] Arai K, Wirth T. Rapid electrochemical deprotection of the isonicotinyloxycarbonyl group from carbonates and thiocarbonates in a microfluidic reactor. Org Process Res Dev 2014;18(11):1377–81. 链接1

[21] Mizuno M, Tateno H, Matsumura Y, Atobe M. Synthesis and molecular weight control of poly(3-hexylthiophene) using electrochemical polymerization in a flow microreactor. React Chem Eng 2017;2(5):642–5. 链接1

[22] García-Espinoza JD, Robles I, Gil V, Becerril-Bravo E, Barrios JA, Godínez LA. Electrochemical degradation of triclosan in aqueous solution. A study of the performance of an electro-Fenton reactor. J Environ Chem Eng 2019;7 (4):103228. 链接1

[23] Küpper M, Hessel V, Löwe H, Stark W, Kinkel J, Michel M, et al. Micro reactor for electroorganic synthesis in the simulated moving bed-reaction and separation environment. Electrochim Acta 2003;48(20–22):2889–96. 链接1

[24] Green RA, Brown RCD, Pletcher D. Electrosynthesis in extended channel length microfluidic electrolysis cells. J Flow Chem 2016;6(3):191–7. 链接1

[25] Recio FJ, Herrasti P, Sirés I, Kulak AN, Bavykin DV, Ponce-de-León C, et al. The preparation of PbO2 coatings on reticulated vitreous carbon for the electrooxidation of organic pollutants. Electrochim Acta 2011;56(14):5158–65. 链接1

[26] Ponce-de-León C, Reade GW, Whyte I, Male SE, Walsh FC. Characterization of the reaction environment in a filter-press redox flow reactor. Electrochim Acta 2007;52(19):5815–23. 链接1

[27] Watt-Smith MJ, Ridley P, Wills RGA, Shah AA, Walsh FC. The importance of key operational variables and electrolyte monitoring to the performance of an all vanadium redox flow battery. J Chem Technol Biotechnol 2013;88(1):126–38. 链接1

[28] Teng Q, Sun Y, Yao Y, Tang HT, Li JR, Pan YM. Metal- and catalyst-free electrochemical synthesis of quinazolinones from alkenes and 2- aminobenzamides. Chem Electro Chem 2019;6(12):3120–4. 链接1

[29] Kabeshov MA, Musio B, Ley SV. Continuous direct anodic flow oxidation of aromatic hydrocarbons to benzyl amides. React Chem Eng 2017;2(6):822–5. 链接1

[30] He P, Watts P, Marken F, Haswell SJ. Self-supported and clean one-step cathodic coupling of activated olefins with benzyl bromide derivatives in a micro flow reactor. Angew Chem Int Ed 2006;118(25):4252–5. 链接1

[31] He P, Watts P, Marken F, Haswell SJ. Electrolyte free electro-organic synthesis: the cathodic dimerisation of 4-nitrobenzylbromide in a micro-gap flow cell. Electrochem Commun 2005;7(9):918–24. 链接1

[32] Amemiya F, Horii D, Fuchigami T, Atobe M. Self-supported paired electrosynthesis using a microflow reactor without intentionally added electrolyte. J Electrochem Soc 2008;155(11):E162. 链接1

[33] Hashemi SMH, Karnakov P, Hadikhani P, Chinello E, Litvinov S, Moser C, et al. A versatile and membrane-less electrochemical reactor for the electrolysis of water and brine. Energy Environ Sci 2019;12(5):1592–604. 链接1

[34] Islam M, Kariuki BM, Shafiq Z, Wirth T, Ahmed N. Efficient electrosynthesis of thiazolidin-2-imines via oxysulfurization of thiourea-tethered terminal alkenes using the flow microreactor. Eur J Org Chem 2019;2019(6):1371–6. 链接1

[35] Kuleshova J, Hill-Cousins JT, Birkin PR, Brown RCD, Pletcher D, Underwood TJ. A simple and inexpensive microfluidic electrolysis cell. Electrochim Acta 2011;56(11):4322–6. 链接1

[36] Suga S, Okajima M, Fujiwara K, Yoshida J. Electrochemical combinatorial organic syntheses using microflow systems. QSAR Comb Sci 2005;24 (6):728–41. 链接1

[37] Makarshin LL, Pai ZP, Parmon VN. Microchannel systems for fine organic synthesis. Russ Chem Rev 2016;85(2):139–55. 链接1

[38] Tanaka K, Yoshizawa H, Atobe M. A flow microreactor approach to a highly efficient Diels–Alder reaction with an electrogenerated o-quinone. Synlett 2019;30(10):1194–8. 链接1

[39] Momeni S, Nematollahi D. Electrosynthesis of new quinone sulfonimide derivatives using a conventional batch and a new electrolyte-free flow cell. Green Chem 2018;20(17):4036–42. 链接1

[40] Laudadio G, Straathof NJW, Lanting MD, Knoops B, Hessel V, Noël T. An environmentally benign and selective electrochemical oxidation of sulfides and thiols in a continuous-flow microreactor. Green Chem 2017;19(17):4061–6. 链接1

[41] Gobert SRL, Kuhn S, Braeken L, Thomassen LCJ. Characterization of milli- and microflow reactors: mixing efficiency and residence time distribution. Org Process Res Dev 2017;21(4):531–42. 链接1

[42] Mielke E, Plouffe P, Koushik N, Eyholzer M, Gottsponer M, Kockmann N, et al. Local and overall heat transfer of exothermic reactions in microreactor systems. React Chem Eng 2017;2(5):763–75. 链接1

[43] Gütz C, Stenglein A, Waldvogel SR. Highly modular flow cell for electroorganic synthesis. Org Process Res Dev 2017;21(5):771–8. 链接1

[44] Baumann M, Baxendale IR. The synthesis of active pharmaceutical ingredients (APIs) using continuous flow chemistry. Beilstein J Org Chem 2015;11:1194–219. 链接1

[45] Britton J, Raston CL. Multi-step continuous-flow synthesis. Chem Soc Rev 2017;46(5):1250–71. 链接1

[46] Gemoets HPL, Su Y, Shang M, Hessel V, Luque R, Noël T. Liquid phase oxidation chemistry in continuous-flow microreactors. Chem Soc Rev 2016;45 (1):83–117. 链接1

[47] Green RA, Pletcher D, Leach SG, Brown RCD. N-heterocyclic carbene-mediated microfluidic oxidative electrosynthesis of amides from aldehydes. Org Lett 2016;18(5):1198–201. 链接1

[48] Mo Y, Jensen KF. Continuous N-hydroxyphthalimide (NHPI)-mediated electrochemical aerobic oxidation of benzylic C–H bonds. Chemistry 2018;24 (40):10260–5. 链接1

[49] Rebrov EV, Klinger EA, Berenguer-Murcia A, Sulman EM, Schouten JC. Selective hydrogenation of 2-methyl-3-butyne-2-ol in a wall-coated capillary microreactor with a Pd25Zn75/TiO2 catalyst. Org Process Res Dev 2009;13 (5):991–8. 链接1

[50] Tadepalli S, Halder R, Lawal A. Catalytic hydrogenation of o-nitroanisole in a microreactor: reactor performance and kinetic studies. Chem Eng Sci 2007;62 (10):2663–78. 链接1

[51] Mandal MM, Aggarwal P, Nigam KDP. Liquid–liquid mixing in coiled flow inverter. Ind Eng Chem Res 2011;50(23):13230–5. 链接1

[52] Mansour M, Khot P, Thévenin D, Nigam KDP, Zähringer K. Optimal Reynolds number for liquid–liquid mixing in helical pipes. Chem Eng Sci 2020;214:114522. 链接1

[53] Xie Y, Chindam C, Nama N, Yang S, Lu M, Zhao Y, et al. Exploring bubble oscillation and mass transfer enhancement in acoustic-assisted liquid–liquid extraction with a microfluidic device. Sci Rep 2015;5:12572. 链接1

[54] Yoon SK, Choban ER, Kane C, Tzedakis T, Kenis PJA. Laminar flow-based electrochemical microreactor for efficient regeneration of nicotinamide cofactors for biocatalysis. J Am Chem Soc 2005;127(30):10466–7. 链接1

[55] Amemiya F, Matsumoto H, Fuse K, Kashiwagi T, Kuroda C, Fuchigami T, et al. Product selectivity control induced by using liquid–liquid parallel laminar flow in a microreactor. Org Biomol Chem 2011;9(11):4256–65. 链接1

[56] Matsumura Y, Kakizaki Y, Tateno H, Kashiwagi T, Yamaji Y, Atobe M. Continuous in situ electrogenaration of a 2-pyrrolidone anion in a microreactor: application to highly efficient monoalkylation of methyl phenylacetate. RSC Adv 2015;5(117):96851–4. 链接1

[57] Folgueiras-Amador AA, Philipps K, Guilbaud S, Poelakker J, Wirth T. An easy-tomachine electrochemical flow microreactor: efficient synthesis of isoindolinone and flow functionalization. Angew Chem Int Ed 2017;56(48):15446–50. 链接1

[58] Horii D, Atobe M, Fuchigami T, Marken F. Self-supported paired electrosynthesis of 2,5-dimethoxy-2,5-dihydrofuran using a thin layer flow cell without intentionally added supporting electrolyte. Electrochem Commun 2005;7(1):35–9. 链接1

[59] Wouters B, Hereijgers J, De Malsche W, Breugelmans T, Hubin A. Electrochemical characterisation of a microfluidic reactor for cogeneration of chemicals and electricity. Electrochim Acta 2016;210:337–45. 链接1

[60] Krˇišt’ál J, Kody´m R, Bouzek K, Jirˇicˇny´ V. Electrochemical microreactor and gasevolving reactions. Electrochem Commun 2008;10(2):204–7.

[61] Yao C, Dong Z, Zhao Y, Chen G. Gas–liquid flow and mass transfer in a microchannel under elevated pressures. Chem Eng Sci 2015;123:137–45. 链接1

[62] Abolhasani M, Günther A, Kumacheva E. Microfluidic studies of carbon dioxide. Angew Chem Int Ed 2014;53(31):7992–8002. 链接1

[63] Nieves-Remacha MJ, Kulkarni AA, Jensen KF. Gas–liquid flow and mass transfer in an advanced-flow reactor. Ind Eng Chem Res 2013;52(26):8996–9010. 链接1

[64] Sui J, Yan J, Liu D, Wang K, Luo G. Continuous synthesis of nanocrystals via flow chemistry technology. Small 2019;16(15):1902828. 链接1

[65] Schwolow S, Mutsch B, Kockmann N, Röder T. Model-based scale-up and reactor design for solvent-free synthesis of an ionic liquid in a millistructured flow reactor. React Chem Eng 2019;4(3):523–36. 链接1

[66] Qiu M, Zha L, Song Y, Xiang L, Su Y. Numbering-up of capillary microreactors for homogeneous processes and its application in free radical polymerization. React Chem Eng 2019;4(2):351–61. 链接1

[67] Shen Q, Zhang C, Tahir MF, Jiang S, Zhu C, Ma Y, et al. Numbering-up strategies of micro-chemical process: uniformity of distribution of multiphase flow in parallel microchannels. Chem Eng Process Process Intensif 2018;132:148–59. 链接1

[68] Kriel FH, Woollam S, Gordon RJ, Grant RA, Priest C. Numbering-up Y–Y microfluidic chips for higher-throughput solvent extraction of platinum (IV) chloride. Microfluid Nanofluid 2016;20(10):138. 链接1

[69] Conchouso D, Castro D, Khan SA, Foulds IG. Three-dimensional parallelization of microfluidic droplet generators for a litre per hour volume production of single emulsions. Lab Chip 2014;14(16):3011–20. 链接1

[70] Scialdone O, Galia A, Sabatino S, Mira D, Amatore C. Electrochemical conversion of dichloroacetic acid to chloroacetic acid in a microfluidic stack and in a series of microfluidic reactors. Chem Electro Chem 2015;2(5):684–90. 链接1

[71] Matsuoka A, Noishiki K, Mae K. Experimental study of the contribution of liquid film for liquid–liquid Taylor flow mass transfer in a microchannel. Chem Eng Sci 2016;155:306–13. 链接1

[72] Li W, Nie Z, Zhang H, Paquet C, Seo M, Garstecki P, et al. Screening of the effect of surface energy of microchannels on microfluidic emulsification. Langmuir 2007;23(15):8010–4. 链接1

[73] Tostado CP, Xu J, Luo G. The effects of hydrophilic surfactant concentration and flow ratio on dynamic wetting in a T-junction microfluidic device. Chem Eng J 2011;171(3):1340–7. 链接1

[74] Wang K, Luo G. Microflow extraction: a review of recent development. Chem Eng Sci 2017;169:18–33. 链接1

[75] Barwe S, Weidner J, Cychy S, Morales DM, Dieckhöfer S, Hiltrop D, et al. Electrocatalytic oxidation of 5-(hydroxymethyl)furfural using high-surface-area nickel boride. Angew Chem Int Ed 2018;57 (35):11460–4. 链接1

[76] Green SK, Lee J, Kim HJ, Tompsett GA, Kim WB, Huber GW. The electrocatalytic hydrogenation of furanic compounds in a continuous electrocatalytic membrane reactor. Green Chem 2013;15(7):1869–79. 链接1

相关研究