期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2021年 第7卷 第3期 doi: 10.1016/j.eng.2020.06.027

下一代太阳能光热电站中熔融氯盐技术研发进展

a Institute of Engineering Thermodynamics, German Aerospace Center (DLR), Stuttgart 70569, Germany
b Institute of Engineering Thermodynamics, German Aerospace Center (DLR), Cologne 51147, Germany

收稿日期: 2019-12-18 修回日期: 2019-06-04 录用日期: 2020-06-28 发布日期: 2021-02-27

下一篇 上一篇

摘要

结合热能储存(TES,以下简称储热)的太阳能光热发电(concentrated solar power, CSP)技术是未来可再生能源系统中最具应用前景的发电技术之一,其可高效利用资源丰富但具间歇性的太阳能,为人们提供稳定可调度且低成本的电力。为了大幅度降低现有商业光热电站的平准化发电成本(levelized cost of electricity, LCOE),人们正在开发具有更高运行温度和发电效率的新一代CSP技术。与目前商业熔融硝酸盐储热系统相比,下一代CSP电站中的储热系统通过使用新型储热材料可在更高的温度(> 565 ℃)下运行。本文首先介绍了下一代CSP技术及其储热技术的研发进展,之后重点介绍了基于熔融氯盐(如MgCl2/NaCl/KCl混合盐)的先进储热技术。MgCl2/NaCl/KCl具有与商业熔融硝酸盐相似的热物性、更高的热稳定性(> 800 ℃)和更低的材料成本(< 0.35 USD∙kg–1)。本文综述了熔融氯盐储热技术中混合氯盐的选择与优化、储热相关物性的测定,以及系统中使用的结构材料(如合金)的熔盐腐蚀控制等方面的最新研究进展。

图片

图1

图2

图3

图4

图5

图6

图7

图8

图9

图10

图11

图12

图13

图14

图15

图16

参考文献

[ 1 ] REN21. Renewables 2019: global status report. Report. Nairobi: United Nations Environment Programme; 2019.

[ 2 ] International Energy Agency. Technology roadmap—solar thermal electricity. Technology report. Paris: International Energy Agency; 2014.

[ 3 ] Liu M, Tay NHS, Bell S, Belusko M, Jacob R, Will G, et al. Review on concentrating solar power plants and new developments in high temperature thermal energy storage technologies. Renew Sustain Energ Rev 2016;53:1411–32. 链接1

[ 4 ] Mehos M, Turchi C, Vidal J, Wagner M, Ma Z, Ho C, et al. Concentrating solar power Gen3 demonstration roadmap. Technical report. Golden: National Renewable Energy Lab; 2017 Jan. Report No: NREL/TP-5500-67464. Contract No.: AC36-08GO28308.

[ 5 ] Solar Millennium AG. The parabolic trough power plants Andasol 1 to 3. Erlangen: Solar Millennium AG; 2008. 链接1

[ 6 ] Kuravi S, Trahan J, Goswami DY, Rahman MM, Stefanakos EK. Thermal energy storage technologies and systems for concentrating solar power plants. Prog Energ Combust 2013;39(4):285–319. 链接1

[ 7 ] Bonk A, Sau S, Uranga N, Hernaiz M, Bauer T. Advanced heat transfer fluids for direct molten salt line-focusing CSP plants. Prog Energ Combust 2018;67:1339–51. 链接1

[ 8 ] Hinkley JT, Hayward JA, Beath AC, Brinsmead TS, Meybodi MA, Lovegrove K. Current and future status of concentrating solar power in Australia. J Jpn Inst Energ 2016;95(3):227–34. 链接1

[ 9 ] Ding W, Bonk A, Bauer T. Corrosion behavior of metallic alloys in molten chloride salts for thermal energy storage in concentrated solar power plants: a review. Front Chem Sci Eng 2018;12(3):564–76. 链接1

[10] Prieto C, Fereres S, Ruiz-Cabañas FJ, Rodriguez-Sanchez A, Montero C. Carbonate molten salt solar thermal pilot facility: plant design, commissioning and operation up to 700 C. Renew Energ 2020;151:528–41. 链接1

[11] Sarvghad M, Steinberg TA, Will G. Corrosion of steel alloys in eutectic NaCl + Na2CO3 at 700 C and Li2CO3 + K2CO3 + Na2CO3 at 450 C for thermal energy storage. Sol Energ Mat Sol C 2017;170:48–59. 链接1

[12] Fernández AG, Gomez-Vidal J, Oró E, Kruizenga A, Solé A, Cabeza LF. Mainstreaming commercial CSP systems: a technology review. Renew Energ 2019;140:152–76. 链接1

[13] Yin J, Zheng Q, Peng Z, Zhang X. Review of supercritical CO2 power cycles integrated with CSP. Int J Energ Res 2019;44(3):1337–69. 链接1

[14] Ding W, Shi H, Xiu Y, Bonk A, Weisenburger A, Jianu A, et al. Hot corrosion behavior of commercial alloys in thermal energy storage material of molten MgCl2/KCl/NaCl under inert atmosphere. Sol Energ Mat Sol C 2018;184:22–30. 链接1

[15] The SunShot Initiative [Internet]. Washington, DC: US Department of Energy; 2019 [cited 2019 Dec 16]. Available from: https://www.energy.gov/ eere/solar/sunshot-initiative. 链接1

[16] astri.org.au [Internet]. Australian Solar Thermal Research Institute; [cited 2019 Dec 16]. Available from: https://www.astri.org.au/. 链接1

[17] sfera.sollab.eu [Internet]. Solar Facilities for the European Research Area; [cited 2019 Dec 16]. Available from: https://sfera.sollab.eu/. 链接1

[18] Final report summary—SFERA (Solar Facilities for the European Research Area) [Internet]. Solar Facilities for the European Research Area; [cited 2019 Dec 16]. Available from: https://cordis.europa.eu/project/id/228296/reporting. 链接1

[19] sfera3.sollab.eu [Internet]. Brussels: SFERA-3; [cited 2019 Dec 16]. Available from: https://sfera3.sollab.eu/. 链接1

[20] stage-ste.psa.es [Internet]. Scientific and Technological Alliance for Guaranteeing the European Excellence in Concentrating Solar Thermal Energy; [cited 2019 Dec 16]. Available from: http://stage-ste.psa.es/. 链接1

[21] Liu B, Wei X, Wang W, Lu J, Ding J. Corrosion behavior of Ni-based alloys in molten NaCl–CaCl2–MgCl2 eutectic salt for concentrating solar power. Sol Energ Mat Sol C 2017;170:77–86. 链接1

[22] Wu Y, Ren N, Wang T, Ma C. Experimental study on optimized composition of mixed carbonate salt for sensible heat storage in solar thermal power plant. Sol Energ 2011;85(9):1957–66. 链接1

[23] Sun H, Zhang P, Wang J. Effects of alloying elements on the corrosion behavior of Ni-based alloys in molten NaCl–KCl–MgCl2 salt at different temperatures. Corros Sci 2018;143:187–99. 链接1

[24] Wang Z. CSP technology and industry development in China [presentation]. In: SETO CSP Program Summit 2019; 2019 Mar 18–19; Oakland, CA, USA; 2019.

[25] Murphy C, Sun Y, Cole W, Maclaurin G, Turchi C, Mehos M. The potential role of concentrating solar power within the context of DOE’s 2030 solar cost targets. Technical report. Golden: National Renewable Energy Laboratory; 2019 Jan. Report No.: NREL/TP-6A20-71912.

[26] Generation 3 Concentrating Solar Power Systems (Gen3 CSP) [Internet]. Washington, DC: US Department of Energy; [cited 2019 Dec 16]. Available from: https://www.energy.gov/eere/solar/generation-3-concentrating-solarpower-systems-gen3-csp. 链接1

[27] Ho CK. A review of high-temperature particle receivers for concentrating solar power. Appl Therm Eng 2016;109:958–69. 链接1

[28] Ma Z, Glatzmaier GC, Mehos M. Development of solid particle thermal energy storage for concentrating solar power plants that use fluidized bed technology. Energ Procedia 2014;49:898–907. 链接1

[29] Mendez Cruz CM, Lance B, Rochau GE. sCO2 Power Cycles Summit summary, November 2017. Technical report. Albuquerque: Sandia National Laboratories; 2017 Nov.

[30] Ho CK, Carlson M, Garg P, Kumar P. Technoeconomic analysis of alternative solarized s-CO2 Brayton cycle configurations. J Sol Energ Eng 2016;138 (5):051008. 链接1

[31] Kruizenga AM. Corrosion mechanisms in chloride and carbonate salts. Report. Sandia: Sandia National Laboratories; 2012 Sep.

[32] Vidal JC, Klammer N. Molten chloride technology pathway to meet the U.S. DOE SunShot initiative with Gen3 CSP. AIP Conf Proc 2019;2126(1):080006.

[33] Gen 3 Particle Pilot Plant (G3P3) [Internet]. Sandia: National Technology and Engineering Solutions of Sandia, LLC.; [cited 2019 Dec 16]. Available from: https://energy.sandia.gov/programs/renewable-energy/csp/current-researchprojects/gen-3-particle-pilot-plant-g3p3/. 链接1

[34] Ho CK. Gen 3 Particle Pilot Plant (G3P3): integrated high-temperature particle system for CSP [poster]. In: DOE Gen 3 CSP Kickoff Meeting; 2018 Jun 25; Orlando, FL, USA; 2018.

[35] Sullivan S. Gen3 gas phase system development and demonstration [presentation]. In: SETO CSP Program Summit 2019; 2019 Mar 18–19; Oakland, CA, USA; 2019.

[36] Robb K. Molten salt thermophysical properties and test facility [presentation]. In: DOE Gen 3 CSP Kickoff Meeting; 2018 Jun 25; Orlando, FL, USA; 2018.

[37] Ho CK, Christian JM, Yellowhair JE, Armijo K, Kolb WJ, Jeter S, et al. On-sun performance evaluation of alternative high-temperature falling particle receiver designs. J Sol Energ Eng 2019;141(1):011009. 链接1

[38] Albrecht KJ, Ho CK. Design and operating considerations for a shell-and-plate, moving packed-bed, particle-to-sCO2 heat exchanger. Sol Energ 2019;178:331–40. 链接1

[39] Sohal MS, Ebner MA, Sabharwall P, Sharpe P. Engineering database of liquid salt thermophysical and thermochemical properties. Idaho Falls: Idaho National Laboratory; 2010 Mar. Report No.: INL/EXT-10-18297.

[40] Kurley JM, Halstenberg PW, McAlister A, Raiman S, Dai S, Mayes RT. Enabling chloride salts for thermal energy storage: implications of salt purity. RSC Adv 2019;9(44):25602–8. 链接1

[41] Arjomandi M, Bayon-Sandoval A, Beath A, Bruno F, Coventry J, Gurgenci H, et al. ASTRI Milestone 12 report—for public dissemination. Canberra: Commonwealth Scientific and Industrial Research Organisation; 2017. 链接1

[42] Coventry J, Andraka C, Pye J, Blanco M, Fisher J. A review of sodium receiver technologies for central receiver solar power plants. Sol Energ 2015;122:749–62. 链接1

[43] Singh R, Miller SA, Rowlands AS. Effects of relative volume-ratios on dynamic performance of a direct-heated supercritical carbon-dioxide closed Brayton cycle in a solar-thermal power plant. Energy 2013;55:1025–32. 链接1

[44] Singh R, Miller SA, Rowlands AS, Jacobs PA. Dynamic characteristics of a direct-heated supercritical carbon-dioxide Brayton cycle in a solar thermal power plant. Energy 2013;50:194–204. 链接1

[45] Qin K, Jahn I, Jacobs P. Effect of operating conditions on the elastohydrodynamic performance of foil thrust bearings for supercritical CO2 cycles. J Eng Gas Turbine Power 2016;139(4):042505-1–10.

[46] Liu M, Saman W, Bruno F. Review on storage materials and thermal performance enhancement techniques for high temperature phase change thermal storage systems. Renew Sustain Energ Rev 2012;16(4):2118–32. 链接1

[47] Jacob R, Bruno F. Review on shell materials used in the encapsulation of phase change materials for high temperature thermal energy storage. Renew Sustain Energ Rev 2015;48:79–87. 链接1

[48] Liu M, Gomez JC, Turchi CS, Tay NHS, Saman W, Bruno F. Determination of thermo-physical properties and stability testing of high-temperature phasechange materials for CSP applications. Sol Energ Mat Sol C 2015;139:81–7. 链接1

[49] Jiang Y, Sun Y, Liu M, Bruno F, Li S. Eutectic Na2CO3–NaCl salt: a new phase change material for high temperature thermal storage. Sol Energ Mat Sol C 2016;152:155–60. 链接1

[50] Bayon A, Bader R, Jafarian M, Fedunik-Hofman L, Sun Y, Hinkley J, et al. Techno-economic assessment of solid–gas thermochemical energy storage systems for solar thermal power applications. Energy 2018;149:473–84. 链接1

[51] Silakhori M, Jafarian M, Arjomandi M, Nathan GJ. Comparing the thermodynamic potential of alternative liquid metal oxides for the storage of solar thermal energy. Sol Energ 2017;157:251–8. 链接1

[52] Mohan G, Venkataraman M, Gomez-Vidal J, Coventry J. Assessment of a novel ternary eutectic chloride salt for next generation high-temperature sensible heat storage. Energy Convers Manage 2018;167:156–64. 链接1

[53] Sarvghad M, Bell S, Raud R, Steinberg TA, Will G. Stress assisted oxidative failure of Inconel 601 for thermal energy storage. Sol Energ Mat Sol C 2017;159:510–7. 链接1

[54] Sarvghad M, Muránsky O, Steinberg TA, Hester J, Hill MR, Will G. On the effect of cold-rolling on the corrosion of SS 316L alloy in a molten carbonate salt. Sol Energ Mat Sol C 2019;202:110136. 链接1

[55] Sarvghad M, Will G, Steinberg TA. Corrosion of steel alloys in molten NaCl + Na2SO4 at 700 C for thermal energy storage. Sol Energ Mat Sol C 2018;179:207–16. 链接1

[56] Sarvghad Moghaddam M. Corrosion of structural alloys in molten salts for solar thermal energy storage [dissertation]. Brisbane: Queensland University of Technology; 2018.

[57] vastsolar.com [Internet]. Darlinghurst: Vast Solar; [cited 2019 Dec 16]. Available from: https://vastsolar.com. 链接1

[58] Wood C, Drewes K. Vast Solar: improving performance and reducing cost and risk using high temperature modular arrays and sodium heat transfer fluid. In: Proceedings of the 25th SolarPACES Conference; 2019 Oct 1–4; Daegu, Republic of Korea; 2019.

[59] Teller O, Nicolai JP, Lafoz M, Laing D, Tamme R, Pedersen AS, et al. Joint EASE/ EERA recommendations for a European energy storage technology development roadmap towards 2030. Brussels: European Association for Storage of Energy, European Energy Research Alliance; 2013. 链接1

[60] Directorate-General for Research and Innovation (European Commission), Joint Research Centre (European Commission). The Strategic Energy Technology (SET) Plan. Luxembourg: Publications Office of the European Union; 2017.

[61] Ding W, Bonk A, Gussone J, Bauer T. Electrochemical measurement of corrosive impurities in molten chlorides for thermal energy storage. J Energ Storage 2018;15:408–14. 链接1

[62] Ding W, Shi H, Jianu A, Xiu Y, Bonk A, Weisenburger A, et al. Molten chloride salts for next generation concentrated solar power plants: mitigation strategies against corrosion of structural materials. Sol Energ Mat Sol C 2019;193:298–313. 链接1

[63] Walczak M, Pineda F, Fernández AG, Mata-Torres C, Escobar RA. Materials corrosion for thermal energy storage systems in concentrated solar power plants. Renew Sustain Energ Rev 2018;86:22–44. 链接1

[64] Fernández AG, Pineda F, Walczak M, Cabeza LF. Corrosion evaluation of alumina-forming alloys in carbonate molten salt for CSP plants. Renew Energ 2019;140:227–33. 链接1

[65] Fernandez AG, Cabeza LF. Corrosion monitoring and mitigation techniques on advanced thermal energy storage materials for CSP plants. Sol Energ Mat Sol C 2019;192:179–87. 链接1

[66] Ebert M, Amsbeck L, Rheinländer J, Schlögl-Knothe B, Schmitz S, Sibum M, et al. Operational experience of a centrifugal particle receiver prototype. AIP Conf Proc 2019;2126(1):030018. 链接1

[67] Wei W, Trebing D, Amsbeck L, Buck R, Pitz-Paal R. Prototype testing of a centrifugal particle receiver for high-temperature concentrating solar applications. J Sol Energ Eng 2015;137(4):041011. 链接1

[68] Ebert M, Amsbeck L, Jensch A, Hertel J, Rheinländer J, Trebing D, et al. Upscaling, manufacturing and test of a centrifugal particle receiver. In: Proceedings of the ASME 2016 10th International Conference on Energy Sustainability collocated with the ASME 2016 Power Conference and the ASME 2016 14th International Conference on Fuel Cell Science, Engineering and Technology; 2016 Jun 26–30; Charlotte, NC, USA; 2016. p. ES2016-59252.

[69] Pacio J, Wetzel T. Assessment of liquid metal technology status and research paths for their use as efficient heat transfer fluids in solar central receiver systems. Sol Energ 2013;93:11–22. Erratum in: Solar Energ 2017;144:827.

[70] Flesch J, Fritsch A, Cammi G, Marocco L, Fellmoser F, Pacio J, et al. Construction of a test facility for demonstration of a liquid lead-bismuthcooled 10 kW thermal receiver in a solar furnace arrangement—SOMMER. Energ Procedia 2015;69:1259–68. 链接1

[71] Niedermeier K, Marocco L, Flesch J, Mohan G, Coventry J, Wetzel T. Performance of molten sodium vs. molten salts in a packed bed thermal energy storage. Appl Therm Eng 2018;141:368–77. 链接1

[72] China announces the first group of CSP demonstration projects [Internet]. SolarPACES; 2016 Sep 1 [cited 2019 Dec 16]. Available from: http:// www.solarpaces.org/china-announces-the-first-group-of-csp-demonstrationprojects/. 链接1

[73] Wang T, Bai F, Chu S, Zhang X, Wang Z. Experiment study of a quartz tube falling particle receiver. Front Energ 2017;11(4):472–9. 链接1

[74] Yang B, Bai F, Wang Y, Wang Z. Study on standby process of an air-based solid packed bed for flexible high temperature heat storage: experimental results and modelling. Appl Energ 2019;238:135–46. 链接1

[75] Wang J, Huang Y, Zang J, Liu G. Recent research progress on supercritical carbon dioxide power cycle in China. In: Proceedings of ASME Turbo Expo 2015: Turbine Technical Conference and Exposition; 2015 Jun 15–19; Montreal, QC, Canada; 2015. p. GT2015-43938.

[76] Li H, Zhang Y, Yao M, Yang Y, HanW, BaiW. Design assessment of a 5 MW fossilfired supercritical CO2 power cycle pilot loop. Energy 2019;174:792–804. 链接1

[77] Moullec YL, Zhang J, Yang Z, Chen W, Qi Z, Zhou P, et al. Shouhang-EDF 10 MWe supercritical CO2 cycle + CSP demonstration project. In: Proceedings of the 3rd European supercritical CO2 Conference; 2019 Sep 19–20; Paris, France; 2019. p. 138–47.

[78] Luo Z, Sultan U, Ni M, Peng H, Shi B, Xiao G. Multi-objective optimization for GPU3 Stirling engine by combining multi-objective algorithms. Renew Energ 2016;94:114–25. 链接1

[79] Bannur S. Concentrated solar power in India: current status, challenges and future outlook. Curr Sci 2018;115(2):222–7. 链接1

[80] Kraemer S. Japan and Australia test solar hydrogen component [Internet]. SolarPACES; 2019 Oct 1 [cited 2019 Dec 16]. Available from: http:// www.solarpaces.org/japan-and-australia-test-solar-hydrogen-component/. 链接1

[81] Kodama T, Gokon N, Cho HC, Bellan S. Particles fluidized bed receiver/reactor with a beam-down solar concentrating optics: first performance test on twostep water splitting with ceria using a Miyazaki solar concentrating system. AIP Conf Proc 2019;2126(1):180011. 链接1

[82] Patel NS, Pavlík V, Bocˇa M. High-temperature corrosion behavior of superalloys in molten salts—a review. Crit Rev Solid State 2017;42(1):83–97. 链接1

[83] Ding W, Bonk A, Bauer T. Molten chloride salts for next generation CSP plants: selection of promising chloride salts and study on corrosion of alloys in molten chloride salts. AIP Conf Proc 2019;2126:200014. 链接1

[84] Wei X, Song M, Peng Q, Ding J, Yang J. A new ternary chloride eutectic mixture and its thermo-physical properties for solar thermal energy storage. Energ Procedia 2014;61:1314–7. 链接1

[85] Maksoud L, Bauer T. Experimental investigation of chloride molten salts for thermal energy storage applications. In: Proceedings of the 10th International Conference on Molten Salt Chemistry and Technology; 2015 Jun 10–12; Shenyang, China; 2015.

[86] Sun H, Wang J, Tang Z, Liu Y, Wang C. Assessment of effects of Mg treatment on corrosivity of molten NaCl–KCl–MgCl2 salt with Raman and infrared spectra. Corros Sci 2020;164:108350. 链接1

[87] Sau S, Tizzoni A, Corsaro N, Veca E, Navas M, Martinez-Tarifa A. Report on protocols for standardized testing procedures and data analysis criteria. Roma: Italian National Agency for New Technologies, Energy and Sustainable Economic Development; 2017. 链接1

[88] Wang K, Molina E, Dehghani G, Xu B, Li P, Hao Q, et al. Experimental investigation to the properties of eutectic salts by NaCl–KCl–ZnCl2 for application as high temperature heat transfer fluids. In: Proceedings of the ASME 2014 8th International Conference on Energy Sustainability collocated with the ASME 2014 12th International Conference on Fuel Cell Science, Engineering and Technology; 2014 Jun 30–Jul 2; Boston, MA, USA; 2014. p. ES2014-6578.

[89] Li Y, Xu X, Wang X, Li P, Hao Q, Xiao B. Survey and evaluation of equations for thermophysical properties of binary/ternary eutectic salts from NaCl, KCl, MgCl2, CaCl2, ZnCl2 for heat transfer and thermal storage fluids in CSP. Sol Energ 2017;152:57–79. 链接1

[90] Wakao M, Minami K, Nagashima A. Viscosity measurements of molten LiCl in the temperature range 886–1275 K. Int J Thermophys 1991;12 (2):223–30. 链接1

[91] Gomez-Vidal JC, Tirawat R. Corrosion of alloys in a chloride molten salt (NaCl–LiCl) for solar thermal technologies. Sol Energ Mat Sol C 2016;157:234–44. 链接1

[92] Wang JW, Zhang CZ, Li ZH, Zhou HX, He JX, Yu JC. Corrosion behavior of nickel-based superalloys in thermal storage medium of molten eutectic NaCl–MgCl2 in atmosphere. Sol Energ Mat Sol C 2017;164:146–55. 链接1

[93] Guo S, Zhang J, Wu W, Zhou W. Corrosion in the molten fluoride and chloride salts and materials development for nuclear applications. Prog Mater Sci 2018;97:448–87. 链接1

[94] Nagaoka T, Kita K, Kondo N. Hot corrosion of Al2O3 and SiC ceramics by KCl– NaCl molten salt. J Ceram Soc Jpn 2015;123(1440):685–9. 链接1

[95] Ding W, Shi Y, Kessel F, Koch D, Bauer T. Characterization of corrosion resistance of C/C–SiC composite in molten chloride mixture MgCl2/NaCl/KCl at 700 C. NPJ Mater Degrad 2019;3:42. 链接1

[96] Kipouros GJ, Sadoway DR. A thermochemical analysis of the production of anhydrous MgCl2. J Light Met 2001;1(2):111–7. 链接1

[97] Maricle DL, Hume DN. A new method for preparing hydroxide-free alkali chloride melts. J Electrochem Soc 1960;107(4):354–6. 链接1

[98] Indacochea JE, Smith JL, Litko KR, Karell EJ. Corrosion performance of ferrous and refractory metals in molten salts under reducing conditions. J Mater Res 1999;14(5):1990–5. 链接1

[99] Garcia-Diaz BL, Olson L, Martinez-Rodriguez M, Fuentes R, Colon-Mercado H, Gray J. High temperature electrochemical engineering and clean energy systems. J S C Acad Sci 2016;14(1):4. 链接1

[100] Choi S, Orabona NE, Dale OR, Okabe P, Inman C, Simpson MF. Effect of Mg dissolution on cyclic voltammetry and open circuit potentiometry of molten MgCl2–KCl–NaCl candidate heat transfer fluid for concentrating solar power. Sol Energy Mat Sol C 2019;202:110087. 链接1

[101] Skar RA. Chemical and electrochemical characterisation of oxide/hydroxide impurities in the electrolyte for magnesium production [dissertation]. Trondheim: Norwegian University of Science and Technology; 2001. 链接1

[102] Gussone J. Schmelzflusselektroytische Abscheidung von Titan auf Vertärkungsfasern zur Herstellung von Titanmatrixverbundwerkstoffen [dissertation]. Aachen: RWTH Aachen University; 2012. German.

[103] Ding W, Bonk A, Gussone J, Bauer T. Cyclic voltammetry for monitoring corrosive impurities in molten chlorides for thermal energy storage. Energ Procedia 2017;135:82–91. 链接1

[104] Ding W, Gomez-Vidal J, Bonk A, Bauer T. Molten chloride salts for next generation CSP plants: electrolytical salt purification for reducing corrosive impurity level. Sol Energ Mat Sol C 2019;199:8–15. 链接1

[105] Gomez-Vidal JC, Fernandez AG, Tirawat R, Turchi C, Huddleston W. Corrosion resistance of alumina-forming alloys against molten chlorides for energy production. I: Pre-oxidation treatment and isothermal corrosion tests. Sol Energ Mat Sol C 2017;166:222–33. 链接1

[106] Gomez-Vidal JC, Fernandez AG, Tirawat R, Turchi C, Huddleston W. Corrosion resistance of alumina-forming alloys against molten chlorides for energy production. II: Electrochemical impedance spectroscopy under thermal cycling conditions. Sol Energ Mat Sol C 2017;166:234–45. 链接1

[107] Gomez-Vidal JC. Corrosion resistance of MCrAlX coatings in a molten chloride for thermal storage in concentrating solar power applications. NPJ Mater Degrad 2017;1:7. 链接1

[108] Azarbayjani K, Rizvi G, Foroutan F. Evaluating effects of immersion tests in molten copper chloride salts on corrosion resistant coatings. Int J Hydrogen Energ 2016;41(19):8394–400. 链接1

[109] Raiman SS, Mayes RT, Kurley JM, Parrish R, Vogli E. Amorphous and partiallyamorphous metal coatings for corrosion resistance in molten chloride salt. Sol Energ Mat Sol C 2019;201:110028. 链接1

相关研究