期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2021年 第7卷 第12期 doi: 10.1016/j.eng.2020.06.028

面向大幅面金属增材抛光的激光扫描振镜与伺服台协同控制系统

a State Key Laboratory of Tribology & Institute of Manufacturing Engineering, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
b School of Mechanical Engineering and Automation, Beihang University, Beijing 100083, China
c Beijing Key Laboratory of Precision/Ultra-Precision Manufacturing Equipments and Control, Tsinghua University, Beijing 100084, China
d National Engineering Laboratory of Additive Manufacturing for Large Metallic Components, Beihang University, Beijing 100083, China
e International Research Institute for Multidisciplinary Science, Beihang University, Beijing 100083, China
f Advanced Manufacturing Center, Ningbo Institute of Technology, Beihang University, Ningbo 315100, China

# These authors contributed equally to this work.

收稿日期: 2019-11-01 修回日期: 2020-03-09 录用日期: 2020-06-08 发布日期: 2021-04-16

下一篇 上一篇

摘要

为了满足高品质金属增材制造的迫切需求,本文创新地提出了一种以激光扫描振镜与精密伺服台协同控制为核心的大幅面激光精密抛光方法,以实现大幅面选区激光熔化(SLM)成形镍合金精密抛光。我们提出的协同控制系统主要包括主从式新型协同控制架构、运动矢量分解和误差合成等核心模块。研究实验结果表明,与传统步进-扫描方法相比,该协同控制系统实现了激光光斑连续运动,避免了拼接误差,加工效率提升了38.24%。由于激光扫描路径更流畅,相应能量分布更均匀,因此,大幅面抛光质量得到显著改善。本协同系统为大幅面、高精度、高效率的激光精密加工提供了重要途径,在航空航天、新能源、高端模具、医疗器械等精密制造领域具有广阔的应用前景。

图片

图1

图2

图3

图4

图5

图6

图7

图8

图9

图10

参考文献

[ 1 ] Bordatchev EV, Hafiz AMK, Tutunea-Fatan OR. Performance of laser polishing in finishing of metallic surfaces. Int J Adv Manuf Technol 2014;73(1–4):35–52. 链接1

[ 2 ] Ma C, Guan Y, Zhou W. Laser surface processing of hot rolled Ni–45.0 at.% Ti shape memory alloy. J Laser Micro Nanoeng 2017;12(1):6–9. 链接1

[ 3 ] Chen Y, Tsai W, Liu S, Horng J. Picosecond laser pulse polishing of ASP23 steel. Opt Laser Technol 2018;107:180–5. 链接1

[ 4 ] Li N, Huang S, Zhang G, Qin R, Liu W, Xiong H, et al. Progress in additive manufacturing on new materials: a review. J Mater Sci Technol 2019;35 (2):242–69. 链接1

[ 5 ] Nie P, Ojo OA, Li Z. Numerical modeling of microstructure evolution during laser additive manufacturing of a nickel-based superalloy. Acta Mater 2014;77:85–95. 链接1

[ 6 ] Wang C, Yang L, Hu Y, Rao S, Wang Y, Pan D, et al. Femtosecond Mathieu beams for rapid controllable fabrication of complex microcages and application in trapping microobjects. ACS Nano 2019;13(4):4667–76. 链接1

[ 7 ] Hu Y, Rao S, Wu S, Wei P, Qiu W, Wu D, et al. All-glass 3D optofluidic microchip with built-in tunable microlens fabricated by femtosecond laser-assisted etching. Adv Opt Mater 2018;6(9):1701299–307. 链接1

[ 8 ] Bikas H, Stavropoulos P, Chryssolouris G. Additive manufacturing methods and modelling approaches: a critical review. Int J Adv Manuf Technol 2016;83(1– 4):389–405. 链接1

[ 9 ] Ma CP, Guan YC, Zhou W. Laser polishing of additive manufactured Ti alloys. Opt Lasers Eng 2017;93:171–7. 链接1

[10] Rosa B, Mognol P, Hascoët J. Laser polishing of additive laser manufacturing surfaces. J Laser Appl 2015;27(S2):S29102. 链接1

[11] Li YH, Wang B, Ma CP, Fang ZH, Chen LF, Guan YC, et al. Material characterization, thermal analysis, and mechanical performance of a laserpolished Ti alloy prepared by selective laser melting. Metals 2019;9(2):112. 链接1

[12] Penchev P, Dimov S, Bhaduri D, Soo SL, Crickboom B. Generic software tool for counteracting the dynamics effects of optical beam delivery systems. Proc Inst Mech Eng Pt B J Eng Manuf 2017;231(1):48–64. 链接1

[13] Ai J, Lv M, Jiang M, Liu J, Zeng X. Focused laser lithographic system for efficient and cross-scale fabrication of large-area and 3D micro-patterns. Opt Lasers Eng 2018;107:335–41. 链接1

[14] Delgado MAO, Lasagni AF. Reducing field distortion for galvanometer scanning system using a vision system. Opt Lasers Eng 2016;86:106–14. 链接1

[15] Yoon K, Kim K, Lee J. One-axis on-the-fly laser system development for widearea fabrication using cell decomposition. Int J Adv Manuf Technol 2014;75:1681–90. 链接1

[16] Martínez S, Lamikiz A, Tabernero I, Ukar E. Laser hardening process with 2D scanning optics. Phys Procedia 2012;39:309–17. 链接1

[17] Jolliffe C, Schlüter H, Kirshenboim Z. Combined galvanometer scanners and motion platforms over standard industrial ethernet networks. In: Proceedings of the 19th International Symposium on Laser Precision Microfabrication; 2018 June 25–28; Edinburgh, UK; 2018. p. 1–6. 链接1

[18] Yoon K. Development of a path generation algorithm for large-area laser patterning using a manual-input control-point. J Laser Micro Nanoeng 2015;10 (2):234–40. 链接1

[19] Hu G, Guan K, Lu L, Zhang J, Lu N, Guan Y. Engineered functional surfaces by laser microprocessing for biomedical applications. Engineering 2018;4 (6):822–30. 链接1

[20] Wang X, Zheng H, Wan Y, Feng W, Lam YC. Picosecond laser surface texturing of a Stavax steel substrate for wettability control. Engineering 2018;4 (6):816–21. 链接1

[21] Lu L, Zhang Z, Guan Y, Zheng H. Enhancement of heat dissipation by laser micro structuring for LED module. Polymers 2018;10(8):886. 链接1

[22] Lim TW, Son Y, Yang DY, Kong HJ, Lee KS, Park SH. Highly effective threedimensional large-scale microfabrication using a continuous scanning method. Appl Phys A Mater Sci Process 2008;92(3):541–5. 链接1

[23] Jonušauskas L, Gailevicˇius D, Rekštyte˙ S, Juodkazis S, Malinauskas M. Synchronization of linear stages and galvo-scanners for efficient direct laser fabrication of polymeric 3D meso-scale structures. In: Proceedings of the Conference on Laser 3D Manufacturing; 2018 Jan 27–Feb 1; San Francisco, CA, USA; 2018. 链接1

[24] Zhang Z, Yan P, Hao G. A large range flexure-based servo system supporting precision additive manufacturing. Engineering 2017;3(5):708–15. 链接1

[25] Heertjes M, Temizer B, Schneiders M. Self-tuning in master–slave synchronization of high-precision stage systems. Control Eng Pract 2013;21 (12):1706–15. 链接1

[26] Li Y, Arthanari S, Guan Y. Influence of laser surface melting on the properties of MB26 and AZ80 magnesium alloys. Surf Coat Technol 2019;378:124964. 链接1

[27] He X, Elmer JW, DebRoy T. Heat transfer and fluid flow in laser microwelding. J Appl Phys 2005;97(8):084909. 链接1

[28] Anderson MJ, Panwisawas C, Sovani Y, Turner RP, Brooks JW, Basoalto HC. Mean-field modelling of the intermetallic precipitate phases during heat treatment and additive manufacture of Inconel 718. Acta Mater 2018;156: 432–45. 链接1

[29] Guan YC, Zhou W, Li ZL, Zheng HY. Influence of overlapping tracks on microstructure evolution and corrosion behavior in laser-melt magnesium alloy. Mater Des 2013;52:452–8. 链接1

[30] Ukar E, Lamikiz A, Liébana F, Martínez S, Tabernero I. An industrial approach of laser polishing with different laser sources. Mater Werkst 2015;46(7):661–7. 链接1

相关研究