期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2020年 第6卷 第8期 doi: 10.1016/j.eng.2020.07.009

月球车叶片伸缩式步行轮的力学分析和性能优化

a Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, School of Mechanical Engineering, Tianjin University of Technology, Tianjin 300384, China
b National Demonstration Center for Experimental Mechanical and Electrical Engineering Education, Tianjin University of Technology, Tianjin 300384, China
c Guangdong Key Laboratory of Intelligent Transportation System, School of Intelligent Systems Engineering, Sun Yat-sen University, Guangzhou 510275, China
d College of Transportation, Jilin University, Changchun 130025, China
e Department of Mechanical Science and Engineering, Tokyo Institute of Technology, Tokyo 152-8550, Japan
f Armour College of Engineering, Illinois Institute of Technology, Chicago, IL 60616, USA
g China Academy of Space Technology, Beijing 100029, China

收稿日期: 2018-04-16 修回日期: 2019-01-05 录用日期: 2019-12-26 发布日期: 2020-07-15

下一篇 上一篇

摘要

在探月工程计划中,月球车的车轮系统是月球车总体设计系统的重要子系统之一。由于月表地形复杂,同时受限于月球车有限的空间,因此大大增加了车轮系统设计和优化工作的难度。本研究的主要目标是针对自主设计的月球车机械结构,建立一个原理型样机以对其性能进行优化。研究的主要工作包括:为应对月表复杂路况,提出了一种适配月球车正反四边形悬架的新型叶片伸缩式步行轮;以功耗最小化为目标,在保证障碍通过性的前提下,分析车轮运动过程中受力情况以实现对车轮的性能优化;最后,基于数字仿真和综合实验方法,验证了新型车轮系统在实际实验中可以达到按需伸缩叶片和节约能耗的效果。本文的研究成果为中国月球车的研究和开发提供了一种技术参考。

图片

图1

图2

图3

图4

图5

图6

图7

图8

图9

图10

图11

图12

参考文献

[ 1 ] Liu X, Xing Y, Mao X, Teng B, Liu Y. A method of ground-based navigation plan for Chang’e-3 Lunar Rover. In: Proceedings of the 33rd Chinese Control Conference; 2014 Jul 28–30; Nanjing, China. New York: IEEE; 2014. 链接1

[ 2 ] Wang Q, Liu J. A Chang’e-4 mission concept and vision of future Chinese lunar exploration activities. Acta Astronaut 2016;127:678–83. 链接1

[ 3 ] Li F, Ye M, Yan J, Hao W, Barriot J. The precise positioning of lunar farside lander using a four-way lander-orbiter relay tracking mode. Astrophys Space Sci 2018;363(11):1–13. 链接1

[ 4 ] Asnani V, Delap D, Creager C. The development of wheels for the Lunar Roving Vehicle. J Terramechs 2009;46(3):89–103. 链接1

[ 5 ] Zhao Y, Zhang R, Li L, Guo L, Zhang M. Walking wheel design for lunar roverand and its application simulation based on virtual lunar environment. Adv Mech Eng 2014;6:1–20. 链接1

[ 6 ] Jia Y, Dai S, Zou Y, Chen X. An overview of the scientific payloads in Chinese Chang’e-3 lunar mission. In: Proceedings of IEEE International Geoscience and Remote Sensing Symposium; 2016 Jul 10–15; Beijing, China. New York: IEEE; 2016. 链接1

[ 7 ] Wu Y, Hapke B. Spectroscopic observations of the Moon at the lunar surface. Earth Planet Sci Lett 2018;484:145–53. 链接1

[ 8 ] Hou X, Ding T, Yue H, Zhang K, Pan W, Deng Z. A simulation study on a diggingtyped lunar soil sampling device and its sampling characteristics based on discrete element method. In: Proceedings of IEEE International Conference on Robotics and Biomimetics; 2015 Dec 6–9; Zhuhai, China. New York: IEEE; 2015. 链接1

[ 9 ] Chen B. Design of a new locomotion system for Lunar Rover [dissertation]. Changchun: Jilin University; 2009. Chinese. 链接1

[10] Vaughan OH. Lunar environment: design criteria models for use in lunar surface mobility studies. NASA Tech Rep 1967;13(1):665–76. 链接1

[11] Di K, Xu B, Peng M, Yue Z, Liu Z, Wan W, et al. Rock size-frequency distribution analysis at the Chang’e-3 landing site. Planet Space Sci 2016;120:103–12. 链接1

[12] Bi C, Yuan Y, Zhang R, Xiang Y, Wang Y, Zhang J. A dynamic mode decomposition based edge detection method for art images. IEEE Photonics J 2017;9(6):1–13. 链接1

[13] Bi C, Yuan Y, Zhang J, Shi Y, Wang Y, Zhang R. Dynamic mode decomposition based video shot detection. IEEE Access 2018;6:21397–407. 链接1

[14] Bi C, Fu B, Chen J, Zhao Y, Yang L, Duan Y, et al. Machine learning based fast multi-layer liquefaction disaster assessment. World Wide Web 2019;22 (5):1935–50. 链接1

[15] Yang L, Wang B, Zhang R, Zhou H, Wang R. Analysis on location accuracy for the Binocular Stereo Vision system. IEEE Photonics J 2018;10(1):1–16. 链接1

[16] Yang L, Cai B, Zhang R, Li K, Wang R. Design and analysis of a new type of lunar rover suspension structure and its neural network control system. J Intell Fuzzy Syst 2018;35(1):269–81. 链接1

[17] Yu X, Fang L, Liua JF. Interaction mechanical analysis between the lunar rover wheel-leg foot and lunar soil. Procedia Eng 2012;29:58–63. 链接1

[18] Sutoh M, Otsuki M, Wakabayashi S, Hoshino T, Hashimoto T. The right path: comprehensive path planning for lunar exploration rovers. IEEE Robot Autom Mag 2015;22(1):22–33. 链接1

[19] Gao H. Development of suspension frame of new eight-wheel lunar rover. Chin J Mech Eng 2008;44(7):85. 链接1

[20] Xie X, Gao F, Huang C, Zeng W. Design and development of a new transformable wheel used in amphibious all-terrain vehicles (A-ATV). J Terramechs 2017;69:45–61. 链接1

[21] Gao Y, Spiteri C, Li CL, Zheng YC. Lunar soil strength estimation based on Chang’e-3 images. Adv Space Res 2016;58(9):1893–9. 链接1

[22] Deng Z, Fang H, Dong Y, Tao J. Research on wheel-walking motion control of Lunar Rover with six cylinder-conical wheels. In: Proceedings of International Conference on Mechatronics and Automation; 2007 Aug 5–8; Harbin, China. New York: IEEE; 2007. 链接1

[23] Chen J, Wang H. Simulation of dynamic performance influencing factors of vehicle wheel bridge load simulation system. In: Proceedings of International Conference on Mechanic Automation and Control Engineering; 2010 Jun 26– 28; Wuhan, China. New York: IEEE; 2010. 链接1

[24] Sun G, Gao F, Sun P, Xu G. Mobility performance analysis of an innovation lunar rover with diameter-variable wheel. In: Proceedings of 2nd International Conference on Space Information Technology; 2007 Nov 10–11; Wuhan, China. Bellingham: SPIE; 2007. 链接1

[25] Chen B. Innovative locomotion system with high trafficability and cab smoothness for lunar rover. Chin J Mech Eng 2008;44(12):143. 链接1

[26] Chen B, Wang R, Jia Y, Guo L, Yang L. Design of a high-performance suspension for lunar rover based on evolution. Acta Astronaut 2009;64(9–10):925–34. 链接1

[27] Chen B, Wang R, Jin L, Guo L, Chen Z. Study on a vane-telescopic walking wheel for lunar rover. In: Proceedings of International Society for Terrain-Vehicle Systems; 2007 Jun 23–26; Fairbanks, AK, USA; 2007. 链接1

[28] Iizuka K, Yoshida T, Kubota T. Effect of tractive given by grousers mounted on wheels for lunar rovers on loose soil. In: Proceedings of 37th Annual Conference of the IEEE Industrial Electronics Society; 2011 Nov 7–10; Melbourne, VIC, Australia. New York: IEEE; 2011. 链接1

[29] Wettergreen D, Bapna D, Maimone M, Thomas G. Developing nomad for robotic exploration of the atacama desert. Robot Auton Syst 1999;26(2– 3):127–48. 链接1

[30] Wang Y, Fan T, Yu X. Stress distribution model between lunar rover wheel-leg foot and lunar soil. Key Eng Mater 2011;474–6:797–802. 链接1

[31] Jin D, Li J, Fan S, Li H, Wang Y. Analysis on the movement effect of lunar rover wheel. Appl Mech Mater 2013;307:211–4. 链接1

[32] Jiang M, Wang X, Zheng M, Dai Y. Interaction between lugged wheel of lunar rover and lunar soil by DEM with a new contact model. In: Proceedings of the 5th NASA/ASCE Workshop on Granular Materials in Space Exploration; 2012 Apr 15–18; Pasadena, CA, USA. Reston: ASCE; 2012. 链接1

[33] Li J. Research on the interaction between lunar rover wheel and lunar soil by simulation. Trans Chin Soc Agri Mach 2008;39:1–3. 链接1

[34] Kuroda Y, Teshima T, Sato Y, Kubota T. Mobility performance evaluation of planetary rover with similarity model experiment. In: Proceedings of IEEE International Conference on Robotics and Automation; 2004 Apr 26–May 1; New Orleans, LA, USA. New York: IEEE; 2004. 链接1

[35] Chen B. Vehicle system mechanical properties. Beijing: Chinese Agricultural Machinery Publication; 1981. 链接1

[36] Meng Y, Wang Y, Xie Y, Zhou J. Wheel-terrain interaction simulation of lunar rover based on Creator/Vega. Robot 2010;32(3):369–74. 链接1

[37] Zheng Y, Ouyang Z, Wang S, Zou Y. Physical and mechanical properties of lunar regolith. J Mineral Petrol 2004;24:14–9. 链接1

[38] Nakashima H. Soil–wheel interactions. In: Encyclopedia of agrophysics encyclopedia of earth sciences series. Berlin: Springer; 2011. p. 810–3. 链接1

[39] Zou M, Li J, Zhang J, Liu G, Li Y. Traction ability of lunar rover’s driving wheel on different soils. J Jilin Univ Eng Technol Ed 2010;40(1):25–9. Chinese. 链接1

[40] Wei C, Zou M, Zhao Z, Li J, Zhou G. Study on the tractive ability of lunar rover wheel by discrete element method. Appl Mech Mater 2012;215–6:964–9. 链接1

[41] Chen B, Chen D. Research on dynamic performance of wheel free wheel. Mashin/Ha-Yi Kishavarzi 1982;13(2):1–15. 链接1

[42] Zhou J, Su Y, Chi Y. Simulation of soil properties by particle flow code. Chin Geotech Eng 2006;28(3):390–6. 链接1

[43] Scott RF. The density of the lunar surface soil. J Geophys Res 1968;73 (16):5469–71. 链接1

[44] Sutoh M, Nagaoka K, Nagatani K, Yoshida K. Design of wheels with grousers for planetary rovers traveling over loose soil. J Terramechs 2013;50(5–6):345–53. 链接1

[45] Jiang M, Dai Y, Cui L, Xi B. Experimental and DEM analyses on wheel–soil interaction. J Terramechs 2018;76:15–28. 链接1

[46] Cardile D, Viola N, Chiesa S, Rougier A. Applied design methodology for lunar rover elastic wheel. Acta Astronaut 2012;81(1):1–11. 链接1

[47] Xia K, Ding L, Gao H, Deng Z. Motion-control-based analytical model for wheel–soil interaction mechanics of lunar rover. In: Proceedings of the 6th International Forum on Strategic Technology; 2011 Aug 22–24; Harbin, China. New York: IEEE; 2011. 链接1

[48] Ibrahim AN, Aoshima S, Fukuoka Y. Development of wheeled rover for traversing steep slope of cohesionless sand with stuck recovery using assistive grousers. In: Proceedings of the 2016 IEEE International Conference on Robotics and Biomimetics; 2016 Dec 3–7; Qingdao, China. New York: IEEE; 2016. 链接1

[49] Nakashima H, Fujii H, Oida A, Momozu M, Kanamori H, Aoki S, et al. Discrete element method analysis of single wheel performance for a small lunar rover on sloped terrain. J Terramechs 2010;47(5):307–21. 链接1

[50] Wu S, Li L, Zhao Y, Li M. Slip ratio based traction coordinating control of wheeled lunar rover with rocker bogie. Procedia Eng 2011;15: 510–5. 链接1

[51] Johnson JB, Kulchitsky AV, Duvoy P, Iagnemma K, Senatore C, Arvidson RE, et al. Discrete element method simulations of Mars Exploration Rover wheel performance. J Terramechs 2015;62:31–40. 链接1

[52] Dizqah AM, Lenzo B, Sorniotti A, Gruber P, Fallah S, De Smet J. A fast and parametric torque distribution strategy for four-wheel-drive energy-efficient electric vehicles. IEEE Trans Ind Electron 2016;63(7): 4367–76. 链接1

[53] Liu S, Yan Q, Wei W. A finite element analysis of blade-wheel’s strength on torqu converters based on steady operating conditions. China Mech Eng 2013;24(14):1922–6. Chinese. 链接1

[54] Iizuka K, Kubota T. Study of flexible wheels for lunar exploration rovers. J Asian Elec Vehicles 2009;7(2):1319–24. 链接1

[55] Pan W, Hou X, Tang D, Ding T, Quan Q. The study of normal force model for the flow of lunar dust particles. In: Proceedings of the 2015 International Conference on Fluid Power and Mechatronics; 2015 Aug 5–7; Harbin, China. New York: IEEE; 2015. 链接1

[56] Zhang R, He Z, Wang H, You F, Li K. Study on self-tuning tyre friction control for developing main-servo loop integrated chassis control system. IEEE Access 2017;5:6649–60. 链接1

[57] Zhou J, Li P, Zhou Y, Wang B, Zang J, Meng L. Toward new-generation intelligent manufacturing. Engineering 2018;4(1):11–20. 链接1

[58] Pan Y. Heading toward Artificial Intelligence 2.0. Engineering 2016;2 (4):409–13. 链接1

[59] Chen Y. Integrated and intelligent manufacturing: perspectives and enablers. Engineering 2017;3(5):588–95. 链接1

[60] Sun XJ, Zhang H, Meng WJ, Zhang RH, Li KL, Peng T. Primary resonance analysis and vibration suppression for the harmonically excited nonlinear suspension system using a pair of symmetric viscoelastic buffers. Nonlinear Dyn 2018;94 (2):1243–65. 链接1

[61] Xiong H, Zhu X, Zhang R. Energy recovery strategy numerical simulation for dual axle drive pure electric vehicle based on motor loss model and big data calculation. Complexity 2018. 4071743. 链接1

相关研究