期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2020年 第6卷 第9期 doi: 10.1016/j.eng.2020.07.010

超高压下的极端含能材料

a Center for High Pressure Science and Technology Advanced Research, Beijing 100094, China
b Centre for Science at Extreme Conditions & School of Physics and Astronomy, University of Edinburgh, Edinburgh EH9 3FD, UK

收稿日期: 2020-04-17 修回日期: 2020-05-18 录用日期: 2020-07-15 发布日期: 2020-07-22

下一篇 上一篇

摘要

含有极高能量密度的单键聚合氮和单原子金属氢,常被称为极端含能材料。虽然它们需要几百吉帕的超高压才能合成,并且难以直接应用,但是研究它们的稳定性、亚稳定性和其他基本特性,仍然对另辟蹊径寻找极端含能材料甚有价值。在100~200 GPa,已经发现了多种结晶态和非晶态的聚合氮。立方偏转结构聚合氮和黑磷结构聚合氮是两种特别有意思的聚合氮,它们的滞后保存现象提供了进一步探索氮应用的前景。另外,虽然金属氢被预估具有最高的能量密度,但预测只能保存皮秒(ps)的寿命和只能合成皮克(pg)的质量,还不是一个有实用可能性的材料。因此金属氢应被定位为一个兴趣导向的基础科研课题,主要聚焦压力下分子氢的晶体构造和电子结构的奇妙演化过程,即从低密度超宽能带的绝缘体,到窄能带的半导体,再到高密度的分子金属和原子金属,最后到前所未有的崭新物理态。这些挑战驱动着超高压科学和技术的持续创新和突破。

图片

图1

图2

参考文献

[ 1 ] Mao HK, Chen X, Ding Y, Li B, Wang L. Solids, liquids, and gases under high pressure. Rev Mod Phys 2018;90(1):015007. 链接1

[ 2 ] Yoo CS. Chemistry under extreme conditions: pressure evolution of chemical bonding and structure in dense solids. Matter Radiat Extremes 2020;5 (1):018202. 链接1

[ 3 ] Yan CS, Vohra YK, Mao HK, Hemley RJ. Very high growth rate chemical vapor deposition of single-crystal diamond. PNAS 2002;99(20):12523–5. 链接1

[ 4 ] Ji C, Li B, Liu W, Smith JS, Björling A, Majumdar A, et al. Crystallography of low Z material at ultrahigh pressure: case study on solid hydrogen. Matter Radiat Extremes 2020;5(3):038401. 链接1

[ 5 ] Badgujar DM, Talawar MB, Asthana SN, Mahulikar PP. Advances in science and technology of modern energetic materials: an overview. J Hazard Mater 2008;151(2–3):289–305. 链接1

[ 6 ] Mailhiot C, Yang LH, McMahan AK. Polymeric nitrogen. Phys Rev B 1992;46:14419–35.

[ 7 ] Reichlin R, Schiferl D, Martin S, Vanderborgh C, Mills RL. Optical studies of nitrogen to 130 GPa. Phys Rev Lett 1985;55(14):1464–7. 链接1

[ 8 ] Ji C, Adeleke AA, Yang L, Wan B, Gou H, Yao Y, et al. Nitrogen in black phosphorus structure. Sci Adv 2020;6:eaba9206. 链接1

[ 9 ] Eremets MI, Gavriliuk AG, Trojan IA, Dzivenko DA, Boehler R. Single-bonded cubic form of nitrogen. Nat Mater 2004;3(8):558–63. 链接1

[10] Gregoryanz E, Goncharov AF, Sanloup C, Somayazulu M, Mao HK, Hemley RJ. High P–T transformations of nitrogen to 170 GPa. J Chem Phys 2007;126 (18):184505. 链接1

[11] Lipp MJ, Klepeis JP, Baer BJ, Cynn H, Evans WJ, Iota V, et al. Transformation of molecular nitrogen to nonmolecular phases at megabar pressures by direct laser heating. Phys Rev B 2007;76(1):014113. 链接1

[12] Tomasino D, Kim M, Smith J, Yoo CS. Pressure-induced symmetry-lowering transition in dense nitrogen to layered polymeric nitrogen (LP-N) with colossal Raman intensity. Phys Rev Lett 2014;113(20):205502. 链接1

[13] Goncharov AF, Gregoryanz E, Mao H, Liu Z, Hemley RJ. Optical evidence for a nonmolecular phase of nitrogen above 150 GPa. Phys Rev Lett 2000;85 (6):1262–5. 链接1

[14] Eremets MI, Hemley RJ, Mao HK, Gregoryanz E. Semiconducting nonmolecular nitrogen up to 240 GPa and its low-pressure stability. Nature 2001;411(6834):170–4. 链接1

[15] Laniel D, Geneste G, Weck G, Mezouar M, Loubeyre P. Hexagonal layered polymeric nitrogen phase synthesized near 250 GPa. Phys Rev Lett 2019;122 (6):066001. 链接1

[16] Ma Y, Oganov AR, Li Z, Xie Y, Kotakoski J. Novel high pressure structures of polymeric nitrogen. Phys Rev Lett 2009;102(6):065501. 链接1

[17] Xia F, Wang H, Hwang JCM, Neto AHC, Yang L. Black phosphorus and its isoelectronic materials. Nat Rev Phys 2019;1(5):306–7. 链接1

[18] Benchafia EM, Yao Z, Yuan G, Chou T, Piao H, Wang X, et al. Cubic gauche polymeric nitrogen under ambient conditions. Nat Commun 2017;8(1):930. 链接1

[19] Pei C, Wang L. Recent progress on high-pressure and high-temperature studies of fullerenes and related materials. Matter Radiat Extremes 2019;4(2):028201. 链接1

[20] Lei L, Zhang L. Recent advance in high-pressure solid-state metathesis reactions. Matter Radiat Extremes 2018;3(3):95–103. 链接1

[21] Li Y, Feng X, Liu H, Hao J, Redfern SAT, Lei W, et al. Route to high-energy density polymeric nitrogen t-N via He–N compounds. Nat Commun 2018;9 (1):722. 链接1

[22] Wang X, Wang Y, Miao M, Zhong X, Lv J, Cui T, et al. Cagelike diamondoid nitrogen at high pressures. Phys Rev Lett 2012;109(17):175502. 链接1

[23] Struzhkin V, Li B, Ji C, Chen XJ, Prakapenka V, Greenberg E, et al. Superconductivity in La and Y hydrides: remaining questions to experiment and theory. Matter Radiat Extremes 2020;5(2):028201. 链接1

[24] Ackland GJ. Stability of metallic hydrogen at ambient aonditions. 2017. arXiv:1709.05300v05301.

[25] Ginzburg VL. Key problems in physics and astrophysics. Moscow: Mir Publishers; 1978. 链接1

[26] Babaev E, Sudbø A, Ashcroft NW. A superconductor to superfluid phase transition in liquid metallic hydrogen. Nature 2004;431(7009):666–8. 链接1

[27] Bonev SA, Schwegler E, Ogitsu T, Galli G. A quantum fluid of metallic hydrogen suggested by first-principles calculations. Nature 2004;431(7009):669–72. 链接1

[28] Wigner E, Huntington HB. On the possibility of a metallic modification of hydrogen. J Chem Phys 1935;3(12):764–70. 链接1

[29] Ashcroft NW. Metallic hydrogen: a high-temperature superconductor? Phys Rev Lett 1968;21(26):1748–50. 链接1

[30] Liu H, Zhu L, Cui W, Ma Y. Room-temperature structures of solid hydrogen at high pressures. J Chem Phys 2012;137(7):074501. 链接1

[31] Gregoryanz E, Ji C, Dalladay-Simpson P, Li B, Howie RT, Mao HK. Everything you always wanted to know about metallic hydrogen but were afraid to ask. Matter Radiat Extremes 2020;5(3):038101. 链接1

[32] Loubeyre P, Occelli F, Dumas P. Synchrotron infrared spectroscopic evidence of the probable transition to metal hydrogen. Nature 2020;577(7792):631–5. 链接1

[33] Celliers PM, Millot M, Brygoo S, McWilliams RS, Fratanduono DE, Rygg JR, et al. Insulator-metal transition in dense fluid deuterium. Science 2018;361 (6403):677–82. 链接1

[34] Eremets MI, Drozdov AP, Kong PP, Wang H. Semimetallic molecular hydrogen at pressure above 350 GPa. Nat Phys 2019;15(12):1246–9. 链接1

[35] Dalladay-Simpson P, Howie RT, Gregoryanz E. Evidence for a new phase of dense hydrogen above 325 gigapascals. Nature 2016;529(7584):63–7. 链接1

[36] Goncharov AF, Chuvashova I, Ji C, Mao HK. Intermolecular coupling and fluxional behavior of hydrogen in phase IV. Proc Natl Acad Sci USA 2019;116 (51):25512–5. 链接1

[37] Ji C, Li B, Liu W, Smith JS, Majumdar A, Luo W, et al. Ultrahigh-pressure isostructural electronic transitions in hydrogen. Nature 2019;573 (7775):558–62. 链接1

[38] Mao HK, Shirley EL, Ding Y, Eng P, Cai YQ, Chow P, et al. Electronic structure of crystalline 4 He at high pressures. Phys Rev Lett 2010;105(18):186404. 链接1

[39] Eggert JH, Mao H, Hemley RJ. Observation of a two-vibron bound-to-unbound transition in solid deuterium at high pressure. Phys Rev Lett 1993;70 (15):2301–4. 链接1

相关研究