期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2022年 第11卷 第4期 doi: 10.1016/j.eng.2020.07.028

4Pi荧光超分辨显微术综述

a State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Technology, Zhejiang University, Hangzhou 310027, China
b Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
c College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China
d MOE Key Laboratory for Biomedical Engineering & Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou 310027, China

# These authors contributed equally to this work.

收稿日期: 2020-03-24 修回日期: 2020-07-27 录用日期: 2020-07-28 发布日期: 2020-12-09

下一篇 上一篇

摘要

自20 世纪90 年代以来,持续的科技进步突破了光学显微镜的衍射极限,使三维超分辨显微成像技术得以实现。回顾这些历程,一个重要的里程碑是基于两个对置物镜的4Pi 显微架构及其超分辨版本的出现。鉴于此,本文综述了4Pi 超分辨显微术的近期进展。总体上,4Pi 超分辨显微镜为透明样品观测提供了一
种能够突破衍射极限、非侵入、各向同性的三维分辨率的技术手段。具体而言,本文针对目标开关和随机开关两个主要4Pi 超分辨显微术版本,讨论了它们的架构、原理、应用和未来发展趋势。

图片

图1

图2

参考文献

[ 1 ] Abbe E. Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung. Archiv für Mikroskopische Anatomie 1873;9(1):413–8. German. 链接1

[ 2 ] Hao X, Kuang C, Gu Z, Wang Y, Li S, Ku Y, et al. From microscopy to nanoscopy via visible light. Light Sci Appl 2013;2(10):e108. 链接1

[ 3 ] Hell S, Stelzer EHK. Properties of a 4Pi confocal fluorescence microscope. J Opt Soc Am A 1992;9(12):2159–66. 链接1

[ 4 ] Hell SW. Far-field optical nanoscopy. Science 2007;316(5828):1153–8. 链接1

[ 5 ] Xu Y, Melia TJ, Toomre DK. Using light to see and control membrane traffic. Curr Opin Chem Biol 2011;15(6):822–30. 链接1

[ 6 ] Sahl SJ, Hell SW, Jakobs S. Fluorescence nanoscopy in cell biology. Nat Rev Mol Cell Biol 2017;18(11):685–701. 链接1

[ 7 ] Betzig E, Patterson GH, Sougrat R, Lindwasser OW, Olenych S, Bonifacino JS, et al. Imaging intracellular fluorescent proteins at nanometer resolution. Science 2006;313(5793):1642–5. 链接1

[ 8 ] Rust MJ, Bates M, Zhuang X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat Methods 2006;3(10):793–6. 链接1

[ 9 ] Hess ST, Girirajan TPK, Mason MD. Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophys J 2006;91 (11):4258–72. 链接1

[10] Juette MF, Gould TJ, Lessard MD, Mlodzianoski MJ, Nagpure BS, Bennett BT, et al. Three-dimensional sub-100 nm resolution fluorescence microscopy of thick samples. Nat Methods 2008;5(6):527–9. 链接1

[11] Huang B, Wang W, Bates M, Zhuang X. Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy. Science 2008;319 (5864):810–3. 链接1

[12] Pavani SRP, Thompson MA, Biteen JS, Lord SJ, Liu N, Twieg RJ, et al. Threedimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function. Proc Natl Acad Sci USA 2009;106(9):2995–9. 链接1

[13] Shechtman Y, Sahl SJ, Backer AS, Moerner WE. Optimal point spread function design for 3D imaging. Phys Rev Lett 2014;113(13):133092. 链接1

[14] Baddeley D, Cannell MB, Soeller C. Three-dimensional sub-100 nm superresolution imaging of biological samples using a phase ramp in the objective pupil. Nano Res 2011;4(6):589–98. 链接1

[15] Hell SW, Wichmann J. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt Lett 1994;19(11):780–2. 链接1

[16] Hofmann M, Eggeling C, Jakobs S, Hell SW. Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins. Proc Natl Acad Sci USA 2005;102(49):17565–9. 链接1

[17] Harke B, Ullal CK, Keller J, Hell SW. Three-dimensional nanoscopy of colloidal crystals. Nano Lett 2008;8(5):1309–13. 链接1

[18] Wildanger D, Medda R, Kastrup L, Hell SW. A compact STED microscope providing 3D nanoscale resolution. J Microsc 2009;236(1):35–43. 链接1

[19] Hell SW, Stelzer EHK. Properties of a 4Pi confocal fluorescence microscope. J Opt Soc Am A 1992;9(12):2159–66. 链接1

[20] Hell SW, inventor; Hell SW, assignee. Doppelkonfokales Rastermikroskop. German patent DE4040441A. 1992 Jul 2.

[21] Bewersdorf J, Schmidt R, Hell SW. Comparison of I5M and 4Pi-microscopy. J Microsc 2006;222(Pt 2):105–17. 链接1

[22] Gustafsson MG, Agard DA, Sedat JW. I5M: 3D widefield light microscopy with better than 100 nm axial resolution. J Microsc 1999;195(Pt 1):10–6. 链接1

[23] Schmidt R, Wurm CA, Jakobs S, Engelhardt J, Egner A, Hell SW. Spherical nanosized focal spot unravels the interior of cells. Nat Methods 2008;5 (6):539–44. 链接1

[24] Böhm U, Hell SW, Schmidt R. 4Pi-RESOLFT nanoscopy. Nat Commun 2016;7 (1):10504. 链接1

[25] Shtengel G, Galbraith JA, Galbraith CG, Lippincott-Schwartz J, Gillette JM, Manley S, et al. Interferometric fluorescent super-resolution microscopy resolves 3D cellular ultrastructure. Proc Natl Acad Sci USA 2009;106(9):3125–30. 链接1

[26] Aquino D, Schönle A, Geisler C, Middendorff CV, Wurm CA, Okamura Y, et al. Two-color nanoscopy of three-dimensional volumes by 4Pi detection of stochastically switched fluorophores. Nat Methods 2011;8(4):353–9. 链接1

[27] Huang F, Sirinakis G, Allgeyer ES, Schroeder LK, Duim WC, Kromann EB, et al. Ultra-high resolution 3D imaging of whole cells. Cell 2016;166(4):1028–40. 链接1

[28] Shao L, Isaac B, Uzawa S, Agard DA, Sedat JW, Gustafsson MG. I5 S: wide-field light microscopy with 100-nm-scale resolution in three dimensions. Biophys J 2008;94(12):4971–83. 链接1

[29] Visscher K, Brakenhoff GJ, Visser TD. Fluorescence saturation in confocal microscopy. J Microsc 1994;175(2):162–5. 链接1

[30] Yamanaka M, Saito K, Smith NI, Kawata S, Nagai T, Fujita K. Saturated excitation of fluorescent proteins for subdiffraction-limited imaging of living cells in three dimensions. Interface Focus 2013;3(5):20130007. 链接1

[31] Gustafsson MGL. Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution. Proc Natl Acad Sci USA 2005;102(37):13081–6. 链接1

[32] Klar TA, Hell SW. Subdiffraction resolution in far-field fluorescence microscopy. Opt Lett 1999;24(14):954–6. 链接1

[33] Klar TA, Jakobs S, Dyba M, Egner A, Hell SW. Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission. Proc Natl Acad Sci USA 2000;97(15):8206–10. 链接1

[34] Hao X, Kuang C, Wang T, Liu X. Effects of polarization on the de-excitation dark focal spot in STED microscopy. J Opt 2010;12(11):115707. 链接1

[35] Dyba M, Hell SW. Focal spots of size k/23 open up far-field fluorescence microscopy at 33 nm axial resolution. Phys Rev Lett 2002;88(16):163901. 链接1

[36] Dyba M, Jakobs S, Hell SW. Immunofluorescence stimulated emission depletion microscopy. Nat Biotechnol 2003;21(11):1303–4. 链接1

[37] Baddeley D, Carl C, Cremer C. 4Pi microscopy deconvolution with a variable point-spread function. Appl Opt 2006;45(27):7056–64. 链接1

[38] Hao X, Allgeyer ES, Booth MJ, Bewersdorf J. Point-spread function optimization in isoSTED nanoscopy. Opt Lett 2015;40(15):3627–30. 链接1

[39] Harke B, Keller J, Ullal CK, Westphal V, Schönle A, Hell SW. Resolution scaling in STED microscopy. Opt Express 2008;16(6):4154–62. 链接1

[40] Ullal CK, Schmidt R, Hell SW, Egner A. Block copolymer nanostructures mapped by far-field optics. Nano Lett 2009;9(6):2497–500. 链接1

[41] Ernster L, Schatz G. Mitochondria: a historical review. J Cell Biol 1981;91 (3):227s–55s. 链接1

[42] Hua Y, Sinha R, Thiel CS, Schmidt R, Hüve J, Martens H, et al. A readily retrievable pool of synaptic vesicles. Nat Neurosci 2011;14(7):833–9. 链接1

[43] Schmidt R, Wurm CA, Punge A, Egner A, Jakobs S, Hell SW. Mitochondrial cristae revealed with focused light. Nano Lett 2009;9(6):2508–10. 链接1

[44] Qu L, Akbergenova Y, Hu Y, Schikorski T. Synapse-to-synapse variation in mean synaptic vesicle size and its relationship with synaptic morphology and function. J Comp Neurol 2009;514(4):343–52. 链接1

[45] Sigal YM, Zhou R, Zhuang X. Visualizing and discovering cellular structures with super-resolution microscopy. Science 2018;361(6405):880–7. 链接1

[46] Schermelleh L, Ferrand A, Huser T, Eggeling C, Sauer M, Biehlmaier O, et al. Super-resolution microscopy demystified. Nat Cell Biol 2019;21(1):72–84. 链接1

[47] Shtengel G, Wang Y, Zhang Z, Goh WI, Hess HF, Kanchanawong P. Imaging cellular ultrastructure by PALM, iPALM, and correlative iPALM-EM. Methods Cell Biol 2014;123:273–94. 链接1

[48] Von Middendorff C, Egner A, Geisler C, Hell SW, Schönle A. Isotropic 3D Nanoscopy based on single emitter switching. Opt Express 2008;16 (25):20774–88. 链接1

[49] Shroff H, Galbraith CG, Galbraith JA, White H, Gillette J, Olenych S, et al. Dualcolor superresolution imaging of genetically expressed probes within individual adhesion complexes. Proc Natl Acad Sci USA 2007;104(51):20308–13. 链接1

[50] Kanchanawong P, Shtengel G, Pasapera AM, Ramko EB, Davidson MW, Hess HF, et al. Nanoscale architecture of integrin-based cell adhesions. Nature 2010;468 (7323):580–4. 链接1

[51] Case LB, Baird MA, Shtengel G, Campbell SL, Hess HF, Davidson MW, et al. Molecular mechanism of vinculin activation and nanoscale spatial organization in focal adhesions. Nat Cell Biol 2015;17(7):880–92. 链接1

[52] Zhang Y, Lara-Tejero M, Bewersdorf J, Galán JE. Visualization and characterization of individual type III protein secretion machines in live bacteria. Proc Natl Acad Sci USA 2017;114(23):6098–103. 链接1

[53] Sochacki KA, Larson BT, Sengupta DC, Daniels MP, Shtengel G, Hess HF, et al. Imaging the post-fusion release and capture of a vesicle membrane protein. Nat Commun 2012;3(1):1154. 链接1

[54] Van Engelenburg SB, Shtengel G, Sengupta P, Waki K, Jarnik M, Ablan SD, et al. Distribution of ESCRT machinery at HIV assembly sites reveals virus scaffolding of ESCRT subunits. Science 2014;343(6171):653–6. 链接1

[55] Buss J, Coltharp C, Shtengel G, Yang X, Hess H, Xiao J. A multi-layered protein network stabilizes the Escherichia coli FtsZ-ring and modulates constriction dynamics. PLoS Genet 2015;11(4):e1005128. 链接1

[56] Del Viso F, Huang F, Myers J, Chalfant M, Zhang Y, Reza N, et al. Congenital heart disease genetics uncovers context-dependent organization and function of nucleoporins at cilia. Dev Cell 2016;38(5):478–92. 链接1

[57] Karanastasis AA, Zhang Y, Kenath GS, Lessard MD, Bewersdorf J, Ullal CK. 3D mapping of nanoscale crosslink heterogeneities in microgels. Mater Horiz 2018;5(6):1130–6. 链接1

[58] Brown TA, Tkachuk AN, Shtengel G, Kopek BG, Bogenhagen DF, Hess HF, et al. Superresolution fluorescence imaging of mitochondrial nucleoids reveals their spatial range, limits, and membrane interaction. Mol Cell Biol 2011;31 (24):4994–5010. 链接1

[59] Zhang Y, Schroeder LK, Lessard MD, Kidd P, Chung J, Song Y, et al. Nanoscale subcellular architecture revealed by multicolor three-dimensional salvaged fluorescence imaging. Nat Methods 2020;17(2):225–31. 链接1

[60] Kopek BG, Shtengel G, Xu CS, Clayton DA, Hess HF. Correlative 3D superresolution fluorescence and electron microscopy reveal the relationship of mitochondrial nucleoids to membranes. Proc Natl Acad Sci USA 2012;109 (16):6136–41. 链接1

[61] Sochacki KA, Shtengel G, van Engelenburg SB, Hess HF, Taraska JW. Correlative super-resolution fluorescence and metal-replica transmission electron microscopy. Nat Methods 2014;11(3):305–8. 链接1

[62] Li Y, Mund M, Hoess P, Deschamps J, Matti U, Nijmeijer B, et al. Real-time 3D single-molecule localization using experimental point spread functions. Nat Methods 2018;15(5):367–9. 链接1

[63] Liu S, Huang F. Enhanced 4Pi single-molecule localization microscopy with coherent pupil based localization. Commun Biol 2020;3(1):220. 链接1

[64] Li Y, Buglakova E, Zhang Y, Thevathasan VJ, Bewersdorf J, Ries J. Accurate 4Pi single-molecule localization using an experimental PSF model. Opt Lett 2020;45(13):1–12. 链接1

[65] Lakadamyali M, Cosma MP. Visualizing the genome in high resolution challenges our textbook understanding. Nat Methods 2020;17(4):371–9. 链接1

[66] Sharonov A, Hochstrasser RM. Wide-field subdiffraction imaging by accumulated binding of diffusing probes. Proc Natl Acad Sci USA 2006;103 (50):18911–6. 链接1

[67] Jungmann R, Steinhauer C, Scheible M, Kuzyk A, Tinnefeld P, Simmel FC. Singlemolecule kinetics and super-resolution microscopy by fluorescence imaging of transient binding on DNA origami. Nano Lett 2010;10(11):4756–61. 链接1

[68] Nieves DJ, Gaus K, Baker MAB. DNA-based super-resolution microscopy: DNAPAINT. Genes 2018;9(12):E621

[69] Chen F, Tillberg PW, Boyden ES. Optical imaging. Expansion microscopy. Science 2015;347(6221):543–8. 链接1

[70] Wassie AT, Zhao Y, Boyden ES. Expansion microscopy: principles and uses in biological research. Nat Methods 2019;16(1):33–41. 链接1

[71] Balzarotti F, Eilers Y, Gwosch KC, Gynnå AH, Westphal V, Stefani FD, et al. Nanometer resolution imaging and tracking of fluorescent molecules with minimal photon fluxes. Science 2017;355(6325):606–12. 链接1

[72] Gwosch KC, Pape JK, Balzarotti F, Hoess P, Ellenberg J, Ries J, et al. MINFLUX nanoscopy delivers 3D multicolor nanometer resolution in cells. Nat Methods 2020;17(2):217–24. 链接1

[73] Wang H, Rivenson Y, Jin Y, Wei Z, Gao R, Günaydın H, et al. Deep learning enables cross-modality super-resolution in fluorescence microscopy. Nat Methods 2019;16(1):103–10. 链接1

[74] Jin L, Liu B, Zhao F, Hahn S, Dong B, Song R, et al. Deep learning enables structured illumination microscopy with low light levels and enhanced speed. Nat Commun 2020;11(1):1934. 链接1

[75] Schlichthaerle T, Strauss MT, Schueder F, Auer A, Nijmeijer B, Kueblbeck M, et al. Direct visualization of single nuclear pore complex proteins using genetically-encoded probes for DNA-PAINT. Angew Chem Int Ed Engl 2019;58 (37):13004–8. 链接1

[76] Jungmann R, Avendaño MS, Woehrstein JB, Dai M, Shih WM, Yin P. Multiplexed 3D cellular super-resolution imaging with DNA-PAINT and Exchange-PAINT. Nat Methods 2014;11(3):313–8. 链接1

[77] Spahn C, Grimm JB, Lavis LD, Lampe M, Heilemann M. Whole-cell, 3D, and multicolor STED imaging with exchangeable fluorophores. Nano Lett 2019;19 (1):500–5. 链接1

[78] Gao M, Maraspini R, Beutel O, Zehtabian A, Eickholt B, Honigmann A, et al. Expansion stimulated emission depletion microscopy (ExSTED). ACS Nano 2018;12(5):4178–85. 链接1

[79] Tong Z, Beuzer P, Ye Q, Axelrod J, Hong Z, Cang H. Ex-STORM: expansion single molecule super-resolution microscopy. bioRxiv049403.

[80] Baddeley D, Batram C, Weiland Y, Cremer C, Birk UJ. Nanostructure analysis using spatially modulated illumination microscopy. Nat Protoc 2007;2 (10):2640–6. 链接1

[81] Hao X, Allgeyer ES, Lee DR, Antonello J, Watters K, Gerdes JA, et al. Threedimensional adaptive optical nanoscopy for thick specimen imaging at sub50-nm resolution. Nat Methods 2021;18(6):688–93.

[82] Curdt F, Herr SJ, Lutz T, Schmidt R, Engelhardt J, Sahl SJ, et al. IsoSTED nanoscopy with intrinsic beam alignment. Opt Express 2015;23 (24):30891–903. 链接1

[83] Yang X, Xie H, Alonas E, Liu Y, Chen X, Santangelo PJ, et al. Mirror-enhanced super-resolution microscopy. Light Sci Appl 2016;5(6):e16134.

[84] Schnitzbauer J, McGorty R, Huang B. 4Pi fluorescence detection and 3D particle localization with a single objective. Opt Express 2013;21(17):19701–8. 链接1

[85] Hao X, Antonello J, Allgeyer ES, Bewersdorf J, Booth MJ. Aberrations in 4Pi microscopy. Opt Express 2017;25(13):14049–58. 链接1

[86] Booth MJ. Adaptive optical microscopy: the ongoing quest for a perfect image. Light Sci Appl 2014;3(4):e165. 链接1

相关研究