期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2020年 第6卷 第8期 doi: 10.1016/j.eng.2020.08.004

中国动态大地坐标框架最优实现的方法与应用

a Chinese Academy of Surveying and Mapping, Beijing 100036, China
b Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
c School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China

收稿日期: 2018-12-15 修回日期: 2020-06-11 录用日期: 2020-06-23 发布日期: 2020-08-13

下一篇 上一篇

摘要

2000国家大地坐标系(CGCS2000)作为正式发布的法定坐标系已运用了多年。在我国,所有基于全球导航卫星系统(GNSS)测站的坐标为了与CGCS2000框架保持一致,都需要进行坐标改正。实现最佳CGCS2000框架需采用不同的策略,而不同的策略会导致不同的结果,有的差异甚至达到几分米。GNSS测站坐标改正常用的两种方法是CGCS2000控制下的拟稳平差和板块运动改正,两种方法计算的结果相差超过10 cm。本文将监督聚类(supervised clustering)统计方法应用于GNSS基准站的选择,同时提出了GNSS测站大网数据处理分组的间距分区(partition spacing)法,并用板块运动改正将当前历元GNSS测站坐标归算至CGCS2000参考历元。结果表明,新的分区方法明显优于传统的地理分区方法。当以不分组的测站坐标为标准时,新分区方法得到的三维坐标分量的精度均优于2 mm。监督聚类法得到的xyz方向上的速度均方根(RMS)分别为0.19 mm·a–1、0.45 mm·a–1和0.32 mm·a–1,远小于传统方法的0.92 mm·a–1、0.72 mm·a–1和0.97 mm·a–1。此外,采用奇异谱分析(SSA)对位置非线性运动进行建模和预测。在东、北、高(E、N和U)方向,SSA的建模精度分别优于3 mm、2 mm和5 mm,在水平方向和垂直方向的预测精度分别优于5 mm和1 cm。

图片

图1

图2

图3

图4

图5

图6

图7

图8

图9

图10

图11

图12

参考文献

[ 1 ] Chen JY. Chinese modern geodetic datum—Chinese Geodetic Coordinate System 2000 (CGCS 2000) and its frame. Acta Geod Cartog Sin 2008;37 (3):269–71. Chinese. 链接1

[ 2 ] Cheng PF, Cheng YY, Wen HJ, Huang J, Wang H, Wang GM. Practical manual on CGCS 2000. Beijing: Surveying and Mapping Press; 2008. Chinese. 链接1

[ 3 ] Wei ZQ, Liu GM, Wu FM. China Geodetic Coordinate System 2000: velocity field in mainland China. Acta Geod Cartog Sin 2011;40(4):403–10. Chinese. 链接1

[ 4 ] Altamimi Z, Sillard P, Boucher C. ITRF2000: a new release of the international terrestrial reference frame for earth science applications. J Geophys Res 2002;107(B10):ETG 2-1–19. 链接1

[ 5 ] Altamimi Z, Métivier L, Collilieux X. ITRF2008 plate motion model. J Geophys Res 2012;117:B07402. 链接1

[ 6 ] Gross R, Beutler G, Plag HP. Integrated scientific and societal user requirements and functional specifications for the GGOS. In: Global geodetic observing system. Berlin: Springer; 2009. p. 209–24. 链接1

[ 7 ] Bennett RA. Instantaneous deformation from continuous GPS: contributions from quasi-periodic loads. Geophys J Int 2008;174(3):1052–64. 链接1

[ 8 ] Davis JL, Wernicke BP, Tamisiea ME. On seasonal signals in geodetic time series. J Geophys Res 2012;117(B1):B01403. 链接1

[ 9 ] Chen Q, van Dam T, Sneeuw N, Collilieux X, Weigelt M, Rebischung P, et al. Singular spectrum analysis for modeling seasonal signals from GPS time series. J Geodyn 2013;72:25–35. 链接1

[10] Collilieux X, Altamimi Z, Coulot D, van Dam T, Ray J. Impact of loading effects on determination of the International Terrestrial Reference Frame. Adv Space Res 2010;45(1):144–54. 链接1

[11] Blewitt G, Lavalée D. Effect of annual signals on geodetic velocity. J Geophys Res 2002;107(B7):2145. 链接1

[12] Jin SG, Zhu WY. Choice of stations for kinematic plate model. J Geodesy Geodynamics 2003;23(3):56–60. Chinese. 链接1

[13] Zhi L. [Research on global tectonic features using space-to-earth observation technology] [dissertation]. Beijing: Institute of Geology, China Earthquake Administration; 2003. Chinese. 链接1

[14] Yang YX, Zeng AM, Wu FM. Horizontal crustal movement in China fitted by adaptive collocation with embedded Euler vector. Sci China Earth Sci 2011;54 (12):1822–9. 链接1

[15] Gan W, Zhang P, Shen ZK, Niu Z, Wang M, Wan Y, et al. Present-day crustal motion within the Tibetan Plateau inferred from GPS measurements. J Geophys Res 2007;112(B8):B08416. 链接1

[16] Drewes H. Combination of VLBI, SLR and GPS determined station velocities for actual plate kinematic and crustal deformation models. In: Geodesy on the move. Berlin: Springer; 1998. p. 377–82. 链接1

[17] Drewes H, Angermann D. The actual plate kinematic and crustal deformation model 2000 (APKIM2000) as a geodetic reference system. In: Proceeding of IAG 2001 Scientific Assembly; 2001 Sep 2–8; Budapest, Hungary; 2001. 链接1

[18] Drewes H. The actual plate kinematic and crustal deformation model APKIM2005 as basic for a non-rotating ITRF. In: Geodetic reference frame. Berlin: Springer; 2009. p. 95–9. 链接1

[19] Bird P. An updated digital model of plate boundaries. Geochem Geophys Geosyst 2003;4(3):1027. 链接1

[20] Xu JS, Lai XA, Zhang GA, Wang QT. New progress in measurement of plate movement by space geodesy and comparison with geological results. Crustal Deform Earth 2001;21(3):55–65. 链接1

[21] Jin SG, Zhu WY. Global plate motion model based on ITRF2000. Ann Shanghai Obs Acad Sin 2002;23:28–33. 链接1

[22] Jin SG, Zhu WY. A revision of the parameters of the NNR-NUVEL1A plate velocity model. J Geodyn 2004;38(1):85–92. 链接1

[23] Jin SG, Park PH, Zhu WY. Micro-plate tectonics and kinematics in Northeast Asia inferred from a dense set of GPS observations. Earth Planet Sci Lett 2007;257(3–4):486–96. 链接1

[24] Wang M, Shen ZK, Niu ZJ, Zhang ZS, Sun HR, Gan WJ, et al. [The present crustal movement and active block model of the Chinese mainland]. Science China D 2003;33:21–32. Chinese. 链接1

[25] Larson KM, Freymueller JT, Philipsen S. Global plate velocities from the Global Positioning System. J Geophys Res 1997;102(B5):9961–81. 链接1

[26] Zhang Q, Zhu WY, Xiong YQ. Global plate motion models incorporating the velocity field of ITRF96. Geophys Res Lett 1999;26(18):2813–6. 链接1

[27] Zhang Q, Zhu WY. [Preliminary construction of China crustal tectonic block motion model]. Sci Bull 2000;45(9):967–74. Chinese. 链接1

[28] Li CY, Wang Q, Zhang ZM, Liu XY. A preliminary study of plate tectonics of China. Bull Chinese Acad Geol Sei 1980;2(1):11–22. Chinese. 链接1

[29] Ding GY, Lu YC. [A preliminary study on the interior motion of modern plate in China]. Sci Bull 1986;31(18):1412–5. Chinese. 链接1

[30] Fu Y, Han Y. ITRF2000 and new global plate motion model. J Inst Surv Mapp 2002;19(2):85–7,91. Chinese. 链接1

[31] Xiong YQ, Zhu WY, Zhang Q. Global plate velocities based on ITRF96. Acta Geod Cartog Sin 2000;29(2):102–8. Chinese. 链接1

[32] Zhu WY, Han JL, Ma WZ. Global plate motion model based on ITRF96 and ITRF97. Acta Astron Sin 2000;41(3):312–9. Chinese. 链接1

[33] Wu GY. Cretaceous: a key transition period of the plate tectonic evolution in China and its adjacent areas. Geol China 2006;33(1):64–77. Chinese. 链接1

[34] Zhang PZ, Wang Q, Ma ZJ. GPS velocity field and active crustal blocks of contemporary tectonic deformation in continental China. Earth Sci Front 2002;9(2):430–41. Chinese. 链接1

[35] Zhang P, Deng QD, Zhang GM, Ma J, Gan WJ, Min W, et al. Active tectonic blocks and strong earthquakes in continent of China. Sci China Ser D 2003;46:13–24. 链接1

[36] Xiao LX. [Kinetic study on intraplate tectonic movement in the Chinese mainland] [dissertation]. Beijing: Institute of Geophysics, China Earthquake Administration; 2003. Chinese. 链接1

[37] Deng QD. [Study on Chinese active tectonics]. Geol Rev 1996;42(4):295–9. Chinese. 链接1

[38] Deng QD, Zhang PZ, Ran YK, Yang XP, Min W, Chu QZ. Basic characteristics of active tectonics of China. Sci China Ser D 2002;32(12):356–72. 链接1

[39] Altamimi Z, Rebischung P, Métivier L, Xavier C. ITRF2014: a new release of the International Terrestrial Reference Frame modeling nonlinear station motions. J Geophys Res Solid Earth 2016;121(8):6109–31. 链接1

[40] Vautard R, Ghil M. Singular spectrum analysis in nonlinear dynamics, with applications to paleoclimatic time series. Physica D 1989;35(3):395–424. 链接1

[41] Elsner JB, Tsonis AA. Singular spectrum analysis: a new tool in time series analysis. New York: Springer, US; 1996. 链接1

[42] Hassani H. Singular spectrum analysis: methodology and comparison. J Data Sci 2007;5:239–57. 链接1

[43] Upton G, Cook I. Understanding statistics. Oxford: Oxford University Press; 1996. 链接1

[44] Kondrashov D, Ghil M. Spatio-temporal filling of missing points in geophysical data sets. Nonlin Process Geophys 2006;13(2):151–9. 链接1

[45] Wang XM, Cheng YY, Wu SQ, Zhang KF. An enhanced singular spectrum analysis method for constructing nonsecular model of GPS site movement. J Geophys Res Solid Earth 2016;121(3):2193–211. 链接1

[46] Wang X, Cheng Y, Wu S, Zhang K. An effective toolkit for the interpolation and gross error detection of GPS time series. Surv Rev 2015;48(348):202–11. 链接1

相关研究