期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2021年 第7卷 第4期 doi: 10.1016/j.eng.2020.08.021

航空公司不正常航班管理——模型和解决方法综述

a School of Economics and Management, Tongji University, Shanghai 200092, China
b Xiamen Airlines, Xiamen 361006, China
c Department of Industrial Engineering and Institute for Advanced Data Analytics, University of Arkansas, Fayetteville, AR 72701, USA
d Center for Applied Optimization, Department of Industrial and Systems Engineering, University of Florida, Gainesville, FL 32611, USA

收稿日期: 2020-04-19 修回日期: 2020-06-26 录用日期: 2020-08-03 发布日期: 2021-02-09

下一篇 上一篇

摘要

航班的正常运行可能会受到各种不可预测因素的影响,导致如机场关闭、临时飞机维护等不正常航班情况发生。当不正常航班产生时,航空公司运行控制中心会采取多种方法来调整资源(包括航班时刻、飞机和机组等)的分配并重新安排旅客以实现航班计划的恢复。本文首先介绍了不正常航班生成的可能场景和一系列常见的恢复手段,接着回顾了飞机路径恢复、机组恢复和多资源整合恢复的基本模型和相关扩展研究,旨在为航空公司实际运行中不同的恢复场景提供合适的模型和方法。此外,本文还对相关课题的未来研究方向提出了建议。

图片

图1

图2

图3

图4

图5

图6

图7

图8

图9

参考文献

[ 1 ] The International Air Transport Association. Infographic: economics air passenger demand [Internet]. Montreal: The International Air Transport Association; 2019. Available from: https://www.iata.org/en/iata-repository/ publications/economic-reports/Infographic_Economics_Air_Passenger_Demand_ 2019/. 链接1

[ 2 ] Eltoukhy AEE, Chan FTS, Chung SH. Airline schedule planning: a review and future directions. Ind Manage Data Syst 2017;117(6):1201–43. 链接1

[ 3 ] Zhou L, Liang Z, Chou CA, Chaovalitwongse WA. Airline planning and scheduling: models and solution methodologies. Front Eng Manag 2020;7:1–26. 链接1

[ 4 ] Civil Aviation Administration of China. Statistical bulletin of civil aviation industry development in 2019. Beijing: Civil Aviation Administration of China; 2020. Chinese.

[ 5 ] OAG. Punctuality League [Internet]. Luton: OAG; 2020. Available from: https:// www.oag.com/punctuality-league-2020-report?submissionGuid=8ba7ac6c475b-4821-9456-4c8203499733. 链接1

[ 6 ] Clarke MDD. Irregular airline operations: a review of the state-of-the-practice in airline operations control centers. J Air Transp Manage 1998;4(2):67–76. 链接1

[ 7 ] Filar JA, Manyem P, White K. How airlines and airports recover from schedule perturbations: a survey. Ann Oper Res 2001;108(1–4):315–33. 链接1

[ 8 ] Kohl N, Larsen A, Larsen J, Ross A, Tiourine S. Airline disruption management— perspectives, experiences and outlook. J Air Transp Manage 2007;13 (3):149–62. 链接1

[ 9 ] Clausen J, Larsen A, Larsen J, Rezanova NJ. Disruption management in the airline industry—concepts, models and methods. Comput Oper Res 2010;37 (5):809–21. 链接1

[10] Belobaba P, Odoni A, Barnhart C, editors. The global airline industry. Hoboken: John Wiley and Sons, Ltd.; 2009.

[11] Barnhart C, Smith B, editors. Quantitative problem solving methods in the airline industry: a modeling methodology handbook. Berlin: Springer; 2012.

[12] Floudas CA, Pardalos PM, editors. Encyclopedia of optimization. 2nd ed. Berlin: Springer; 2009.

[13] Hane CA, Barnhart C, Johnson EL, Marsten RE, Nemhauser GL, Sigismondi G. The fleet assignment problem: solving a large-scale integer program. Math Program 1995;70(1–3):211–32. 链接1

[14] Yan S, Yang DH. A decision support framework for handling schedule perturbation. Transp Res Pt B Methodol 1996;30(6):405–19. 链接1

[15] Yan S, Lin CG. Airline scheduling for the temporary closure of airports. Transport Sci 1997;31(1):72–82. 链接1

[16] Andersson T, Värbrand P. The flight perturbation problem. Transp Plann Technol 2004;27(2):91–117. 链接1

[17] Bard JF, Yu G, Argüello MF. Optimizing aircraft routings in response to groundings and delays. IIE Trans 2001;33(10):931–47. 链接1

[18] Thengvall BG, Bard JF, Yu G. Balancing user preferences for aircraft schedule recovery during irregular operations. IIE Trans 2000;32(3):181–93. 链接1

[19] Thengvall BG, Yu G, Bard JF. Multiple fleet aircraft schedule recovery following hub closures. Transp Res Pt A Policy Pract 2001;35(4):289–308. 链接1

[20] Vos HWM, Santos BF, Omondi T. Aircraft schedule recovery problem—a dynamic modeling framework for daily operations. Transp Res Procedia 2015;10:931–40. 链接1

[21] Vink J, Santos BF, Verhagen WJC, Medeiros I, Filho R. Dynamic aircraft recovery problem—an operational decision support framework. Comput Oper Res 2020;117:104892. 链接1

[22] Argüello MF, Bard JF, Yu G. A grasp for aircraft routing in response to groundings and delays. J Comb Optim 1997;1(3):211–28. 链接1

[23] Rosenberger JM, Johnson EL, Nemhauser GL. Rerouting aircraft for airline recovery. Transport Sci 2003;37(4):408–21. 链接1

[24] Eggenberg N, Salani M, Bierlaire M. Constraint-specific recovery network for solving airline recovery problems. Comput Oper Res 2010;37(6):1014–26. 链接1

[25] Wu Z, Li B, Dang C, Hu F, Zhu Q, Fu B. Solving long haul airline disruption problem caused by groundings using a distributed fixed-point computational approach to integer programming. Neurocomputing 2017;269:232–55. 链接1

[26] Liang Z, Xiao F, Qian X, Zhou L, Jin X, Lu X, et al. A column generation-based heuristic for aircraft recovery problem with airport capacity constraints and maintenance flexibility. Transp Res Pt B Methodol 2018;113:70–90. 链接1

[27] Aktürk MS, Atamtürk A, Gürel S. Aircraft rescheduling with cruise speed control. Oper Res 2014;62(4):829–45. 链接1

[28] Jarrah AIZ, Yu G, Krishnamurthy N, Rakshit A. A decision support framework for airline flight cancellations and delays. Transport Sci 1993;27(3):266–80. 链接1

[29] Thengvall BG, Bard JF, Yu G. A bundle algorithm approach for the aircraft schedule recovery problem during hub closures. Transport Sci 2003;37 (4):392–407. 链接1

[30] Andersson T. Solving the flight perturbation problem with meta heuristics. J Heuristics 2006;12(1–2):37–53. 链接1

[31] Liu TK, Jeng CR, Chang YH. Disruption management of an inequality-based multi-fleet airline schedule by a multi-objective genetic algorithm. Transp Plann Technol 2008;31(6):613–39. 链接1

[32] Wei G, Yu G, Song M. Optimization model and algorithm for crew management during airline irregular operations. J Comb Optim 1997;1(3):305–21. 链接1

[33] Teodorovic´ D, Stojkovic´ G. Model to reduce airline schedule disturbances. J Transp Eng 1995;121(4):324–31. 链接1

[34] Stojkovic´ M, Soumis F, Desrosiers J. The operational airline crew scheduling problem. Transport Sci 1998;32(3):232–45. 链接1

[35] Lettovsky´ L, Johnson EL, Nemhauser GL. Airline crew recovery. Transport Sci 2000;34(4):337–48. 链接1

[36] Yu G, Argüello M, Song G, McCowan SM, White A. A new era for crew recovery at continental airlines. Interfaces 2003;33(1):5–22. 链接1

[37] Guo Y, Suhl L, Thiel MP. Solving the airline crew recovery problem by a genetic algorithm with local improvement. Oper Res 2005;5(2):241–59. 链接1

[38] Medard CP, Sawhney N. Airline crew scheduling from planning to operations. Eur J Oper Res 2007;183(3):1013–27. 链接1

[39] Stojkovic´ M, Soumis F. An optimization model for the simultaneous operational flight and pilot scheduling problem. Manage Sci 2001;47 (9):1290–305. 链接1

[40] Stojkovic´ M, Soumis F. The operational flight and multi-crew scheduling problem. Yugosl J Oper Res 2005;15(1):25–48. 链接1

[41] Abdelghany A, Ekollu G, Narasimhan R, Abdelghany K. A proactive crew recovery decision support tool for commercial airlines during irregular operations. Ann Oper Res 2004;127(1–4):309–31. 链接1

[42] Desrochers M, Soumis F. A generalized permanent labeling algorithm for the shortest path problem with time windows. Inf Syst Res 1988;26(3):191–212. 链接1

[43] Nissen R, Haase K. Duty-period-based network model for crew rescheduling in European airlines. J Sched 2006;9(3):255–78. 链接1

[44] Chang SC. A duty based approach in solving the aircrew recovery problem. J Air Transp Manage 2012;19:16–20. 链接1

[45] Bratu S, Barnhart C. Flight operations recovery: new approaches considering passenger recovery. J Sched 2006;9(3):279–98. 链接1

[46] Abdelghany KF, Abdelghany AF, Ekollu G. An integrated decision support tool for airlines schedule recovery during irregular operations. Eur J Oper Res 2008;185(2):825–48. 链接1

[47] Petersen JD, Sölveling G, Clarke JP, Johnson EL, Shebalov S. An optimization approach to airline integrated recovery. Transport Sci 2012;46(4): 482–500. 链接1

[48] Maher SJ. A novel passenger recovery approach for the integrated airline recovery problem. Comput Oper Res 2015;57:123–37. 链接1

[49] Zhang D, Henry Lau HYK, Yu C. A two stage heuristic algorithm for the integrated aircraft and crew schedule recovery problems. Comput Ind Eng 2015;87:436–53. 链接1

[50] Maher SJ. Solving the integrated airline recovery problem using column-androw generation. Transport Sci 2016;50(1):216–39. 链接1

[51] Arıkan U, Gürel S, Aktürk MS. Flight network-based approach for integrated airline recovery with cruise speed control. Transport Sci 2017;51 (4):1259–87. 链接1

[52] Arıkan U, Gürel S, Aktürk MS. Integrated aircraft and passenger recovery with cruise time controllability. Ann Oper Res 2016;236(2):295–317. 链接1

[53] Marla L, Vaaben B, Barnhart C. Integrated disruption management and flight planning to trade off delays and fuel burn. Transport Sci 2017;51(1):88–111. 链接1

[54] Jafari N, Zegordi SH. The airline perturbation problem: considering disrupted passengers. Transp Plann Technol 2010;33(2):203–20. 链接1

[55] Jafari N, Zegordi SH. Simultaneous recovery model for aircraft and passengers. J Franklin Inst 2011;348(7):1638–55. 链接1

[56] Hu Y, Xu B, Bard JF, Chi H, Gao M. Optimization of multi-fleet aircraft routing considering passenger transiting under airline disruption. Comput Ind Eng 2015;80:132–44. 链接1

[57] Bisaillon S, Cordeau JF, Laporte G, Pasin F. A large neighbourhood search heuristic for the aircraft and passenger recovery problem. 4OR-Q J Oper Res 2011;9(2):139–57. 链接1

[58] Sinclair K, Cordeau JF, Laporte G. Improvements to a large neighborhood search heuristic for an integrated aircraft and passenger recovery problem. Eur J Oper Res 2014;233(1):234–45. 链接1

[59] Sinclair K, Cordeau JF, Laporte G. A column generation post-optimization heuristic for the integrated aircraft and passenger recovery problem. Comput Oper Res 2016;65:42–52. 链接1

[60] Jozefowiez N, Mancel C, Mora-Camino F. A heuristic approach based on shortest path problems for integrated flight, aircraft, and passenger rescheduling under disruptions. J Oper Res Soc 2013;64(3):384–95. 链接1

[61] Hu Y, Song Y, Zhao K, Xu B. Integrated recovery of aircraft and passengers after airline operation disruption based on a GRASP algorithm. Transport Res E-Log 2016;87:97–112. 链接1

相关研究