期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2021年 第7卷 第3期 doi: 10.1016/j.eng.2020.08.022

一步法绿色制备具有持续抗菌性能的医用支架

a Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou 510655, China
b Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou 510655, China
c John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
d Materials Science Institute, PCFM Lab and GDHPRC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
e Department of Surgery, Dongguan Third Peoples' Hospital, Dongguan 523000, China

# These authors contributed equally to this work.

收稿日期: 2019-11-08 修回日期: 2020-06-20 录用日期: 2020-08-06 发布日期: 2021-03-02

下一篇 上一篇

摘要

聚丙烯(polypropylene, PP)支架是目前最常用的生物医用支架,在外科手术使用中存在黏连、感染、异物反应等缺点。本文报道了一种简易一步法,用于制备新型三氯生聚多巴胺聚丙烯(TPP)复合支架,从而有效地提高了PP支架的生物相容性和持续抗菌性。通过一步法绿色制造,具有广谱抗菌效果的三氯生在聚多巴胺形成过程中,在PP支架表面可以有效地与多巴胺发生相互作用。三氯生可从具有生物相容性的聚多巴胺表面涂层持续释放。利用三氯生(浓度为8 mg∙mL−1,即TPP-8)制备的5 mm × 5 mm的支架具备持续抗菌性,对最大菌液量为2 mL的大肠杆菌(E. coli)和5 mL的金黄色葡萄球菌(S. aureus)的持续抗菌时间超过15 d。本研究为长效抗菌医用生物材料的绿色制备提供了一个新的方向。

图片

图1

图2

图3

图4

图5

图6

图7

图8

图9

图10

参考文献

[ 1 ] Parekh G, Shi Y, Zheng J, Zhang X, Leporatti S. Nano-carriers for targeted delivery and biomedical imaging enhancement. Ther Deliv 2018;9:451–68. 链接1

[ 2 ] Zhou M, Zhang X, Xie J, Qi R, Lu H, Leporatti S, et al. pH-sensitive poly(b-amino ester)s nanocarriers facilitate the inhibition of drug resistance in breast cancer cells. Nanomaterials 2018;8:952. 链接1

[ 3 ] Yang Y, Jin P, Zhang X, Ravichandran N, Ying H, Yu C, et al. New epigallocatechin gallate (EGCG) nanocomplexes co-assembled with 3- mercapto-1-hexanol and b-lactoglobulin for improvement of antitumor activity. J Biomed Nanotechnol 2017;13:805–14. 链接1

[ 4 ] Niu Y, Stadler FJ, He T, Zhang X, Yu Y, Chen S. Smart multifunctional polyurethane microcapsules for the quick release of anticancer drugs in BGC 823 and HeLa tumor cells. J Mater Chem B 2017;5:9477–81. 链接1

[ 5 ] Cazalini EM, Miyakawa W, Teodoro GR, Sobrinho ASS, Matieli JE, Massi M, et al. Antimicrobial and anti-biofilm properties of polypropylene meshes coated with metal-containing DLC thin films. J Mater Sci Mater Med 2017;28:97. 链接1

[ 6 ] Maitz MF. Applications of synthetic polymers in clinical medicine. Biosurface Biotribol 2015;1:161–76. 链接1

[ 7 ] Teo AJT, Mishra A, Park I, Kim YJ, Park WT, Yoon YJ. Polymeric biomaterials for medical implants and devices. ACS Biomater Sci Eng 2016;2:454–72. 链接1

[ 8 ] Hemamalini T, Giri Dev VR. Comprehensive review on electrospinning of starch polymer for biomedical applications. Int J Biol Macromol 2018;106:712–8. 链接1

[ 9 ] Saalwächter K, Seiffert S. Dynamics-based assessment of nanoscopic polymernetwork mesh structures and their defects. Soft Matter 2018;14:1976–91. 链接1

[10] Kaito T, Myoui A, Takaoka K, Saito N, Nishikawa M, Tamai N, et al. Potentiation of the activity of bone morphogenetic protein-2 in bone regeneration by a PLA–PEG/hydroxyapatite composite. Biomaterials 2005;26(1):73–9. 链接1

[11] Lai Y, Li Y, Cao H, Long J, Wang X, Li L, et al. Osteogenic magnesium incorporated into PLGA/TCP porous scaffold by 3D printing for repairing challenging bone defect. Biomaterials 2019;197:207–19. 链接1

[12] Gonzalez R, Fugate K, McClusky D 3rd, Ritter EM, Lederman A, Dillehay D, et al. Relationship between tissue ingrowth and mesh contraction. World J Surg 2005;29:1038–43. 链接1

[13] Junge K, Klinge U, Rosch R, Klosterhalfen B, Schumpelick V. Functional and morphologic properties of a modified mesh for inguinal hernia repair. World J Surg 2002;26:1472–80. 链接1

[14] Hu M, Lin X, Huang R, Yang K, Liang Y, Zhang X, et al. Lightweight, highly permeable, biocompatible, and antiadhesive composite meshes for intraperitoneal repairs. Macromol Biosci 2018;18(7):1800067. 链接1

[15] Wang C, Wang D, Dai T, Xu P, Wu P, Zou Y, et al. Skin pigmentation-inspired polydopamine sunscreens. Adv Funct Mater 2018;28(33):1802127. 链接1

[16] Davachi SM, Kaffashi B, Torabinejad B, Zamanian A. In-vitro investigation and hydrolytic degradation of antibacterial nanocomposites based on PLLA/ triclosan/nano-hydroxyapatite. Polymer 2016;83:101–10. 链接1

[17] Davachi SM, Kaffashi B, Torabinejad B, Zamanian A, Seyfi J, Hejazi I. Investigating thermal, mechanical and rheological properties of novel antibacterial hybrid nanocomposites based on PLLA/triclosan/nanohydroxyapatite. Polymer 2016;90:232–41. 链接1

[18] Karaszewska A, Kamin´ ska I, Kiwała M, Gadzinowski M, Gosecki M, Slomkowski S. Preparation and properties of textile materials modified with triclosanloaded polylactide microparticles. Polym Adv Technol 2017;28(9):1185–93. 链接1

[19] Chen S, Zhang S, Galluzzi M, Li F, Zhang X, Yang X, et al. Insight into multifunctional polyester fabrics finished by one-step eco-friendly strategy. Chem Eng J 2019;358:634–42. 链接1

[20] Hou R, Wu L, Wang J, Yang Z, Tu Q, Zhang X, et al. Surface-degradable drugeluting stent with anticoagulation, antiproliferation, and endothelialization functions. Biomolecules 2019;9:69. 链接1

[21] Jin L, Zhang X, Li Z, Chen G, Li J, Wang Z, et al. Three-dimensional nanofibrous microenvironment designed for the regulation of mesenchymal stem cells. Appl Nanosci 2018;8(8):1915–24. 链接1

[22] Li J, Li Z, Chu D, Jin L, Zhang X. Fabrication and biocompatibility of core–shell structured magnetic fibrous scaffold. J Biomed Nanotechnol 2019;15 (3):500–6. 链接1

[23] Du Y, Khan S, Zhang X, Yu G, Liu R, Zheng B, et al. In-situ preparation of porous carbon nanosheets loaded with metal chalcogenides for a superior oxygen evolution reaction. Carbon 2019;149:144–51. 链接1

[24] Simons WW, editor. Sadtler handbook of infrared spectra. Philadelphia: Sadtler Research Laboratories; 1978. 链接1

[25] Wang X, Wang Y, Bi S, Wang Y, Chen X, Qiu L, et al. Optically transparent antibacterial films capable of healing multiple scratches. Adv Funct Mater 2014;24(3):403–11. 链接1

[26] McBride MC, Karl Malcolm R, David Woolfson A, Gorman SP. Persistence of antimicrobial activity through sustained release of triclosan from pegylated silicone elastomers. Biomaterials 2009;30(35): 6739–47. 链接1

[27] Cao C, Tan L, Liu W, Ma J, Li L. Polydopamine coated electrospun poly (vinyldiene fluoride) nanofibrous membrane as separator for lithium-ion batteries. J Power Sources 2014;248:224–9. 链接1

[28] Cong Y, Xia T, Zou M, Li Z, Peng B, Guo D, et al. Mussel-inspired polydopamine coating as a versatile platform for synthesizing polystyrene/Ag nanocomposite particles with enhanced antibacterial activities. J Mater Chem B 2014;2 (22):3450–61. 链接1

[29] Luo R, Tang L, Zhong S, Yang Z, Wang J, Weng Y, et al. In vitro investigation of enhanced hemocompatibility and endothelial cell proliferation associated with quinone-rich polydopamine coating. ACS Appl Mater Interfaces 2013;5 (5):1704–14. 链接1

[30] Ortuso RD, Ricardi N, Bürgi T, Wesolowski TA, Sugihara K. The deconvolution analysis of ATR-FTIR spectra of diacetylene during UV exposure. Spectrochim Acta A 2019;219:23–32. 链接1

[31] Rodríguez-Félix DE, Castillo-Ortega MM, Nájera-Luna AL, Montaño-Figueroa AG, López-Peña IY, Del Castillo-Castro T, et al. Preparation and characterization of coaxial electrospun fibers containing triclosan for comparative study of release properties with amoxicillin and epicatechin. Curr Drug Deliv 2016;13 (1):49–56. 链接1

[32] Li Z, Chu D, Chen G, Shi L, Jin L, Zhang X, et al. Biocompatible and biodegradable 3D double-network fibrous scaffold for excellent cell growth. J Biomed Nanotechnol 2019;15(11):2209–15. 链接1

[33] Wang X, Jin J, Hou R, Zhou Mi, Mou X, Xu K, et al. Differentiation of bMSCs on biocompatible, biodegradable, and biomimetic scaffolds for largely defected tissue repair. ACS Appl Biol Mater 2020;3(1):735–46. 链接1

[34] Huang R, Chen X, Dong Y, Zhang X, Wei Y, Yang Z, et al. MXene composite nanofibers for cell culture and tissue engineering. ACS Appl Biol Mater 2020;3 (4):2125–31. 链接1

[35] Luo S, Wu S, Xu J, Zhang X, Zou L, Yao R, et al. Osteogenic differentiation of BMSCs on MoS2 composite nanofibers with different cell seeding densities. Appl Nanosci 2020;10(9):3703–16. 链接1

[36] Bai Z, Wang L, Zhang X, Ran C, Liao Q, Qin L. A novel fiber-grafting-sensing testing method for temperature deformation of piezoelectric composites. Polym Test 2019;81:1061–2. 链接1

相关研究