期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2021年 第7卷 第1期 doi: 10.1016/j.eng.2020.09.014

基于一维纳米结构阵列的质子交换膜燃料电池电极设计的研究进展

School of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, UK

收稿日期: 2019-12-30 修回日期: 2020-07-24 录用日期: 2020-09-15 发布日期: 2020-12-23

下一篇 上一篇

摘要

一维(1D)铂基电催化剂对氧还原反应(ORR)展现出了良好的催化活性和稳定性。基于一维铂基纳米结构阵列的三维(3D)有序电极的研究进展表明,它们在解决现有铂/碳(Pt/C)纳米颗粒电极在高性能质子交换膜燃料电池(PEMFC)的传质特性和持久性挑战方面具有巨大的潜力。本文综述了该领域的最新进展,重点介绍了基于独立的铂纳米线阵列的三维有序结构电极,讨论了纳米结构薄膜(NSTF)催化剂以及沉积在聚合物纳米线、碳和二氧化钛纳米管阵列上的铂基纳米颗粒电极,并回顾了铂基纳米管阵列电极的研究进展。本文指出了一维催化剂纳米结构的尺寸、表面性质和分配控制的重要性。最后,讨论了一维纳米结构阵列电极在增大电化学比表面积(ECSA)和氧传质阻力定量研究方面面临的挑战和未来的发展机遇。

图片

图1

图2

图3

图4

图5

图6

图7

图8

图9

图10

图11

图12

图13

图14

图15

参考文献

[ 1 ] Di Marcoberardino G, Chiarabaglio L, Manzolini G, Campanari S. A Technoeconomic comparison of micro-cogeneration systems based on polymer electrolyte membrane fuel cell for residential applications. Appl Energy 2019;239:692–705. 链接1

[ 2 ] Barbir F. PEM fuel cells: theory and practice. 2nd ed. Boston: Elsevier Academic Press; 2013. 链接1

[ 3 ] Papageorgopoulos D. Fuel cell R&D overview [presentation]. In: Proceedings of the 2019 Annual Merit Review and Peer Evaluation Meeting; 2019 Apr 29–May 1; Crystal City, VA, USA; 2019.

[ 4 ] Stephens IEL, Rossmeisl J, Chorkendorff I. Toward sustainable fuel cells. Science 2016;354(6318):1378–9. 链接1

[ 5 ] Gittleman CS, Kongkanand A, Masten D, Gu W. Materials research and development focus areas for low cost automotive proton-exchange membrane fuel cells. Curr Opin Electrochem 2019;18:81–9. 链接1

[ 6 ] Wang W, Lv F, Lei Bo, Wan S, Luo M, Guo S. Tuning nanowires and nanotubes for efficient fuel-cell electrocatalysis. Adv Mater 2016;28(46):10117–41. 链接1

[ 7 ] Kiani M, Zhang J, Luo Y, Jiang C, Fan J, Wang G, et al. Recent developments in electrocatalysts and future prospects for oxygen reduction reaction in polymer electrolyte membrane fuel cells. J Energy Chem 2018;27(4):1124–39. 链接1

[ 8 ] Escudero-Escribano M, Jensen KD, Jensen AW. Recent advances in bimetallic electrocatalysts for oxygen reduction: design principles, structure-function relations and active phase elucidation. Curr Opin Electrochem 2018;8:135–46. 链接1

[ 9 ] Shao M, Chang Q, Dodelet JP, Chenitz R. Recent advances in electrocatalysts for oxygen reduction reaction. Chem Rev 2016;116(6):3594–657. 链接1

[10] Sui S, Wang X, Zhou X, Su Y, Riffat S, Liu CJ. A comprehensive review of Pt electrocatalysts for the oxygen reduction reaction: nanostructure, activity, mechanism and carbon support in PEM fuel cells. J Mater Chem A 2017;5 (5):1808–25. 链接1

[11] Li C, Tan H, Lin J, Luo X, Wang S, You J, et al. Emerging Pt-based electrocatalysts with highly open nanoarchitectures for boosting oxygen reduction reaction. Nano Today 2018;21:91–105. 链接1

[12] Li Y, Guo S. Noble metal-based 1D and 2D electrocatalytic nanomaterials: recent progress, challenges and perspectives. Nano Today 2019;28:100774. 链接1

[13] Pan L, Ott S, Dionigi F, Strasser P. Current challenges related to the deployment of shape-controlled Pt alloy oxygen reduction reaction nanocatalysts into low Pt-loaded cathode layers of proton exchange membrane fuel cells. Curr Opin Electrochem 2019;18:61–71. 链接1

[14] Li M, Zhao Z, Cheng T, Fortunelli A, Chen CY, Yu R, et al. Ultrafine jagged platinum nanowires enable ultrahigh mass activity for the oxygen reduction reaction. Science 2016;354(6318):1414–9. 链接1

[15] Debe MK. Electrocatalyst approaches and challenges for automotive fuel cells. Nature 2012;486(7401):43–51. 链接1

[16] Lu Y, Du S, Steinberger-Wilckens R. One-dimensional nanostructured electrocatalysts for polymer electrolyte membrane fuel cells—a review. Appl Catal B 2016;199:292–314. 链接1

[17] Wang G, Zou L, Huang Q, Zou Z, Yang H. Multidimensional nanostructured membrane electrode assemblies for proton exchange membrane fuel cell applications. J Mater Chem A 2019;7(16):9447–77. 链接1

[18] Middelman E. Improved PEM fuel cell electrodes by controlled self-assembly. Fuel Cells Bull 2002;2002(11):9–12. 链接1

[19] Debe MK. Tutorial on the fundamental characteristics and practical properties of nanostructured thin film (NSTF) catalysts. J Electrochem Soc 2013;160(6): F522–34. 链接1

[20] Van der Vliet DF, Wang C, Tripkovic D, Strmcnik D, Zhang XF, Debe MK, et al. Mesostructured thin films as electrocatalysts with tunable composition and surface morphology. Nature Mater 2012;11(12):1051–8. 链接1

[21] Chan K, Eikerling M. Impedance model of oxygen reduction in water-flooded pores of ionomer-free PEFC catalyst layers. J Electrochem Soc 2011;159(2): B155–64. 链接1

[22] Jiang S, Yi B, Cao L, Song W, Zhao Q, Yu H, et al. Development of advanced catalytic layer based on vertically aligned conductive polymer arrays for thinfilm fuel cell electrodes. J Power Sources 2016;329:347–54. 链接1

[23] Xia Z, Wang S, Jiang L, Sun H, Liu S, Fu X, et al. Bio-inspired construction of advanced fuel cell cathode with Pt anchored in ordered hybrid polymer matrix. Sci Rep 2015;5(1):16100. 链接1

[24] Sun R, Xia Z, Shang L, Fu X, Li H, Wang S, et al. Hierarchically ordered arrays with platinum coated PANI nanowires for highly efficient fuel cell electrodes. J Mater Chem A 2017;5(29):15260–5. 链接1

[25] Fu X, Wang S, Xia Z, Li Y, Jiang L, Sun G. Aligned polyaniline nanorods in situ grown on gas diffusion layer and their application in polymer electrolyte membrane fuel cells. Int J Hydrogen Energy 2016;41(5):3655–63. 链接1

[26] Murata S, Imanishi M, Hasegawa S, Namba R. Vertically aligned carbon nanotube electrodes for high current density operating proton exchange membrane fuel cells. J Power Sources 2014;253:104–13. 链接1

[27] Zhang W, Chen J, Minett AI, Swiegers GF, Too CO, Wallace GG. Novel ACNT arrays based MEA structure-nano-Pt loaded ACNT/Nafion/ACNT for fuel cell applications. Chem Commun 2010;46(26):4824–6. 链接1

[28] Tian ZQ, Lim SH, Poh CK, Tang Z, Xia Z, Luo Z, et al. A highly order-structured membrane electrode assembly with vertically aligned carbon nanotubes for ultra-low Pt loading PEM fuel cells. Adv Energy Mater 2011;1(6):1205–14. 链接1

[29] Liu J, Yuan Y, Bashir S. Functionalization of aligned carbon nanotubes to enhance the performance of fuel cell. Energies 2013;6(12):6476–86. 链接1

[30] Yuan Y, Smith JA, Goenaga G, Liu DJ, Luo Z, Liu J. Platinum decorated aligned carbon nanotubes: electrocatalyst for improved performance of proton exchange membrane fuel cells. J Power Sources 2011;196(15):6160–7. 链接1

[31] Zhu J, He G, Liang L, Wan Q, Shen PK. Direct anchoring of platinum nanoparticles on nitrogen and phosphorus-dual-doped carbon nanotube arrays for oxygen reduction reaction. Electrochim Acta 2015;158:374–82. 链接1

[32] Van Hooijdonk E, Bittencourt C, Snyders R, Colomer JF. Functionalization of vertically aligned carbon nanotubes. Beilstein J Nanotechnol 2013;4:129–52. 链接1

[33] Mardle P, Ji X, Wu J, Guan S, Dong H, Du S. Thin film electrodes from Pt nanorods supported on aligned N-CNTs for proton exchange membrane fuel cells. Appl Catal B 2020;260:118031. 链接1

[34] Zhang C, Yu H, Li Y, Song W, Yi B, Shao Z. Preparation of Pt catalysts decorated TiO2 nanotube arrays by redox replacement of Ni precursors for proton exchange membrane fuel cells. Electrochim Acta 2012;80:1–6. 链接1

[35] Zhang C, Yu H, Li Y, Gao Y, Zhao Y, Song W, et al. Supported noble metals on hydrogen-treated TiO2 nanotube arrays as highly ordered electrodes for fuel cells. Chem Sus Chem 2013;6(4):659–66. 链接1

[36] Zhang C, Yu H, Fu Li, Xiao Yu, Gao Y, Li Y, et al. An oriented ultrathin catalyst layer derived from high conductive TiO2 nanotube for polymer electrolyte membrane fuel cell. Electrochim Acta 2015;153:361–9. 链接1

[37] Jiang S, Yi B, Zhang C, Liu S, Yu H, Shao Z. Vertically aligned carbon-coated titanium dioxide nanorod arrays on carbon paper with low platinum for proton exchange membrane fuel cells. J Power Sources 2015;276:80–8. 链接1

[38] Meier JC, Galeano C, Katsounaros I, Witte J, Bongard HJ, Topalov AA, et al. Design criteria for stable Pt/C fuel cell catalysts. Beilstein J Nanotechnol 2014;5:44–67. 链接1

[39] Tiwari JN, Tiwari RN, Kim KS. Zero-dimensional, one-dimensional, twodimensional and three-dimensional nanostructured materials for advanced electrochemical energy devices. Prog Mater Sci 2012;57(4):724–803. 链接1

[40] Wang J, Gu H. Novel metal nanomaterials and their catalytic applications. Molecules 2015;20(9):17070–92. 链接1

[41] Wang M, Zhang H, Thirunavukkarasu G, Salam I, Varcoe JR, Mardle P, et al. Ionic liquid-modified microporous ZnCoNC-based electrocatalysts for polymer electrolyte fuel cells. ACS Energy Lett 2019;4(9):2104–10. 链接1

[42] Gasteiger HA, Kocha SS, Sompalli B, Wagner FT. Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs. Appl Catal B 2005;56(1-2):9–35. 链接1

[43] St-Pierre J, Zhai Y, Angelo MS. Effect of selected airborne contaminants on PEMFC performance. J Electrochem Soc 2014;161(3):F280–90. 链接1

[44] St-Pierre J, Zhai Y. Impact of the cathode Pt loading on PEMFC contamination by several airborne contaminants. Molecules 2020;25(5):1060. 链接1

[45] Fidiani E, Thirunavukkarasu G, Li Y, Chiu YL, Du S. Ultrathin AgPt alloy nanorods as low-cost oxygen reduction reaction electrocatalysts in proton exchange membrane fuel cells. J Mater Chem A 2020;8(23):11874–83. 链接1

[46] Sun S, Zhang G, Geng D, Chen Y, Li R, Cai M, et al. A highly durable platinum nanocatalyst for proton exchange membrane fuel cells: multiarmed starlike nanowire single crystal. Angew Chem Int Ed 2011;50(2):422–6. 链接1

[47] Meng H, Zhan Y, Zeng D, Zhang X, Zhang G, Jaouen F. Factors influencing the growth of Pt nanowires via chemical self-assembly and their fuel cell performance. Small 2015;11(27):3377–86. 链接1

[48] Sun S, Yang D, Zhang G, Sacher E, Dodelet JP. Synthesis and characterization of platinum nanowire–carbon nanotube heterostructures. Chem Mater 2007;19 (26):6376–8. 链接1

[49] Du S. Pt-based nanowires as electrocatalysts in proton exchange fuel cells. Int J Low-Carbon Technol 2012;7(1):44–54. 链接1

[50] Du S, Koenigsmann C, Sun S. One-dimensional nanostructures for PEM fuel cell applications. London: Academic Press; 2017. 链接1

[51] Du S. A facile route for polymer electrolyte membrane fuel cell electrodes with in situ grown Pt nanowires. J Power Sources 2010;195(1):289–92. 链接1

[52] Boronat-González A, Herrero E, Feliu JM. Fundamental aspects of HCOOH oxidation at platinum single crystal surfaces with basal orientations and modified by irreversibly adsorbed adatoms. J Solid State Electrochem 2014;18 (5):1181–93. 链接1

[53] Wissel K, Brandes G, Pütz N, Angrisani GL, Thieleke J, Lenarz T, et al. Platinum corrosion products from electrode contacts of human cochlear implants induce cell death in cell culture models. PLoS ONE 2018;13(5):e0196649. 链接1

[54] Du S, Millington B, Pollet BG. The effect of Nafion ionomer loading coated on gas diffusion electrodes with in-situ grown Pt nanowires and their durability in proton exchange membrane fuel cells. Int J Hydrogen Energy 2011;36 (7):4386–93. 链接1

[55] Sun S, Jaouen F, Dodelet JP. Controlled growth of Pt nanowires on carbon nanospheres and their enhanced performance as electrocatalysts in PEM fuel cells. Adv Mater 2008;20(20):3900–4. 链接1

[56] Li B, Higgins DC, Xiao Q, Yang D, Zhng C, Cai M, et al. The durability of carbon supported Pt nanowire as novel cathode catalyst for a 1.5 kW PEMFC stack. Appl Catal B 2015;162:133–40. 链接1

[57] Du S, Pollet BG. Catalyst loading for Pt-nanowire thin film electrodes in PEFCs. Int J Hydrogen Energy 2012;37(23):17892–8. 链接1

[58] Lu Y, Steinberger-Wilckens R, Du S. Evolution of gas diffusion layer structures for aligned Pt nanowire electrodes in PEMFC applications. Electrochim Acta 2018;279:99–107. 链接1

[59] Lu Y, Du S, Steinberger-Wilckens R. Temperature-controlled growth of singlecrystal Pt nanowire arrays for high performance catalyst electrodes in polymer electrolyte fuel cells. Appl Catal B 2015;164:389–95. 链接1

[60] Guo S, Dong S, Wang E. Three-dimensional Pt-on-Pd bimetallic nanodendrites supported on graphene nanosheet: facile synthesis and used as an advanced nanoelectrocatalyst for methanol oxidation. ACS Nano 2010;4(1):547–55. 链接1

[61] Du S, Lu Y, Steinberger-Wilckens R. PtPd nanowire arrays supported on reduced graphene oxide as advanced electrocatalysts for methanol oxidation. Carbon 2014;79:346–53. 链接1

[62] Mardle P, Fernihough O, Du S. Evaluation of the scaffolding effect of Pt nanowires supported on reduced graphene oxide in PEMFC electrodes. Coatings 2018;8(2):48. 链接1

[63] Lu Y, Du S, Steinberger-Wilckens R. Three-dimensional catalyst electrodes based on PtPd nanodendrites for oxygen reduction reaction in PEFC applications. Appl Catal B 2016;187:108–14. 链接1

[64] Du S, Lin K, Malladi SK, Lu Y, Sun S, Xu Q, et al. Plasma nitriding induced growth of Pt-nanowire arrays as high performance electrocatalysts for fuel cells. Sci Rep 2015;4(1):6439. 链接1

[65] Lin K, Lu Y, Du S, Li X, Dong H. The effect of active screen plasma treatment conditions on the growth and performance of Pt nanowire catalyst layer in DMFCs. Int J Hydrogen Energy 2016;41(18):7622–30. 链接1

[66] Sui S, Zhuo X, Su K, Yao X, Zhang J, Du S, et al. In situ grown nanoscale platinum on carbon powder as catalyst layer in proton exchange membrane fuel cells (PEMFCs). J Energy Chem 2013;22(3):477–83. 链接1

[67] Yao X, Su K, Sui S, Mao L, He A, Zhang J, et al. A novel catalyst layer with carbon matrix for Pt nanowire growth in proton exchange membrane fuel cells (PEMFCs). Int J Hydrogen Energy 2013;38(28):12374–8. 链接1

[68] Su K, Sui S, Yao X, Wei Z, Zhang J, Du S. Controlling Pt loading and carbon matrix thickness for a high performance Pt-nanowire catalyst layer in PEMFCs. Int J Hydrogen Energy 2014;39(7):3397–403. 链接1

[69] Su K, Yao X, Sui S, Wei Z, Zhang J, Du S. Ionomer content effects on the electrocatalyst layer with in-situ grown Pt nanowires in PEMFCs. Int J Hydrogen Energy 2014;39(7):3219–25. 链接1

[70] Su K, Yao X, Sui S, Wei Z, Zhang J, Du S. Matrix material study for in situ grown Pt nanowire electrocatalyst layer in proton exchange membrane fuel cells (PEMFCs). Fuel Cells 2015;15(3):449–55. 链接1

[71] Wei Z, He A, Su K, Sui S. Carbon matrix effects on the micro-structure and performance of Pt nanowire cathode prepared by decal transfer method. J Energy Chem 2015;24(2):213–8. 链接1

[72] Wei Z, Su K, Sui S, He A, Du S. High performance polymer electrolyte membrane fuel cells (PEMFCs) with gradient Pt nanowire cathodes prepared by decal transfer method. Int J Hydrogen Energy 2015;40(7):3068–74. 链接1

[73] Sui S, Wei Z, Su K, He A, Wang X, Su Y, et al. Pt nanowire growth induced by Pt nanoparticles in application of the cathodes for polymer electrolyte membrane fuel cells (PEMFCs). Int J Hydrogen Energy 2018;43(43):20041–9. 链接1

[74] Galbiati S, Morin A, Pauc N. Supportless platinum nanotubes array by atomic layer deposition as PEM fuel cell electrode. Electrochim Acta 2014;125:107–16. 链接1

[75] Galbiati S, Morin A, Pauc N. Nanotubes array electrodes by Pt evaporation: half-cell characterization and PEM fuel cell demonstration. Appl Catal B 2015;165:149–57. 链接1

[76] Marconot O, Pauc N, Buttard D, Morin A. Vertically aligned platinum copper nanotubes as PEM fuel cell cathode: elaboration and fuel cell test. Fuel Cells 2018;18(6):723–30. 链接1

[77] Zeng Y, Shao Z, Zhang H, Wang Z, Hong S, Yu H, et al. Nanostructured ultrathin catalyst layer based on open-walled PtCo bimetallic nanotube arrays for proton exchange membrane fuel cells. Nano Energy 2017;34:344–55. 链接1

[78] Mardle P, Du S. Annealing behaviour of Pt and PtNi nanowires for proton exchange membrane fuel cells. Materials 2018;11(8):1473. 链接1

[79] Khan A, Nath BK, Chutia J. Conical nano-structure arrays of Platinum cathode catalyst for enhanced cell performance in PEMFC (proton exchange membrane fuel cell). Energy 2015;90:1769–74. 链接1

[80] Muench F. Metal nanotube/nanowire-based unsupported network electrocatalysts. Catalysts 2018;8(12):597. 链接1

[81] Hou Y, Deng H, Pan F, Chen W, Du Q, Jiao K. Pore-scale investigation of catalyst layer ingredient and structure effect in proton exchange membrane fuel cell. Appl Energy 2019;253:113561. 链接1

[82] Darling R. Modeling air electrodes with low platinum loading. J Electrochem Soc 2019;166(7):F3058–64. 链接1

[83] Wang B, Xie B, Xuan J, Jiao K. AI-based optimization of PEM fuel cell catalyst layers for maximum power density via data-driven surrogate modeling. Energy Convers Manage 2020;205:112460. 链接1

[84] Owejan JP, Owejan JE, Gu W. Impact of platinum loading and catalyst layer structure on PEMFC performance. J Electrochem Soc 2013;160(8):F824–33. 链接1

[85] Dogan DC, Cho S, Hwang SM, Kim YM, Guim H, Yang TH, et al. Highly durable supportless Pt hollow spheres designed for enhanced oxygen transport in cathode catalyst layers of proton exchange membrane fuel cells. ACS Appl Mater Interfaces 2016;8(41):27730–9. 链接1

[86] Weber AZ, Kusoglu A. Unexplained transport resistances for low-loaded fuelcell catalyst layers. J Mater Chem A 2014;2(41):17207–11. 链接1

[87] Kongkanand A, Mathias MF. The priority and challenge of high-power performance of low-platinum proton-exchange membrane fuel cells. J Phys Chem Lett 2016;7(7):1127–37. 链接1

[88] Ott S, Orfanidi A, Schmies H, Anke B, Nong HN, Hübner J, et al. Ionomer distribution control in porous carbon-supported catalyst layers for high-power and low Pt-loaded proton exchange membrane fuel cells. Nat Mater 2020;19 (1):77–85. 链接1

[89] Zeng H, Huang J, Tian Y, Li L, Tirrell MV, Israelachvili JN. Adhesion and detachment mechanisms between polymer and solid substrate surfaces: using polystyrene–mica as a model system. Macromolecules 2016;49(14):5223–31. 链接1

[90] Holdcroft S. Fuel cell catalyst layers: a polymer science perspective. Chem Mater 2014;26(1):381–93. 链接1

[91] Zhang GR, Munoz M, Etzold BJM. Accelerating oxygen-reduction catalysts through preventing poisoning with non-reactive species by using hydrophobic ionic liquids. Angew Chem Int Ed 2016;55(6):2257–61. 链接1

[92] Snyder J, Livi K, Erlebacher J. Oxygen reduction reaction performance of [MTBD][beti]-encapsulated nanoporous NiPt alloy nanoparticles. Adv Funct Mater 2013;23(44):5494–501. 链接1

相关研究