期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2021年 第7卷 第9期 doi: 10.1016/j.eng.2020.10.018

迈向L5级自动驾驶汽车的发展原则

State Key Laboratory of Automotive Safety and Energy, School of Vehicle and Mobility, Tsinghua University, Beijing 100084, China

收稿日期: 2020-05-13 修回日期: 2020-07-30 录用日期: 2020-10-25 发布日期: 2021-01-08

下一篇 上一篇

摘要

自动驾驶汽车的快速发展给现有交通出行方式带来了全新面貌和潜在挑战。目前,L3 级及以下驾驶辅助系统已经量产,L4 级在特定场景下的一些应用也逐步开发,通过逐渐提高车辆的自动化、智能化程度来不断向完全自动驾驶发展。然而,针对L5 级自动驾驶汽车的发展思路始终未明确,而现有针对L0~L4级自动驾驶发展过程的研发方式主要基于任务驱动来进行特定场景下的功能开发,难以揭示高等级自动驾驶汽车所需解决问题的本质逻辑和物理机制,进而阻碍了迈向L5 级自动驾驶的途径。本文通过探索高等级自动驾驶系统背后的物理机制,并从驾驶的本质出发,采用推理演绎方式,提出“大脑-小脑-器官”协调平衡框架,基于“乌鸦推理+鹦鹉学舌”的混合模式,探索“自主学习+先验知识”的研究范式,实现自动驾驶汽车“自学习、自适应、自超越”特性。从系统、统一、均衡的角度出发,基于最小作用量原理和统一安全场思想,旨在为高等级自动驾驶汽车,尤其是L5 级自动驾驶的研发提供一种全新的研发思路与有效途径。

图片

图1

图2

图3

图4

图5

图6

图7

图8

参考文献

[ 1 ] Antsaklis PJ, Rahnama A. Control and machine intelligence for system autonomy. J Intell Robot Syst 2018;91:23–34. 链接1

[ 2 ] Fridman L. Human-centered autonomous vehicle systems: principles of effective shared autonomy. 2018. arXiv:1810.01835.

[ 3 ] SAE On-Road Automated Vehicles Standards Committee. J3016. Taxonomy and definitions for terms related to on-road motor vehicle automated driving systems. Washington, DC: SAE International; 2014.

[ 4 ] Kamil F, Tang SH, Khaksar W, Zulkifli N, Ahmad SA. A review on motion planning and obstacle avoidance approaches in dynamic environments. Adv Robot Autom 2015;4(2):1000134. 链接1

[ 5 ] Ulbrich S, Reschka A, Rieken J, Ernst S, Bagschik G, Dierkes F, et al. Towards a functional system architecture for automated vehicles. 2017. arXiv:1703.08557.

[ 6 ] Badue C, Guidolini R, Carneiro RV, Azevedo P, Cardoso VB, Forechi A, et al. Selfdriving cars: a survey. 2019. arXiv:1901.04407.

[ 7 ] Dingus TA, Guo F, Lee S, Antin JF, Perez M, Buchanan-King M, et al. Driver crash risk factors and prevalence evaluation using naturalistic driving data. Proc Natl Acad Sci 2016;113(10):2636–41. 链接1

[ 8 ] Muhrer E, Vollrath M. The effect of visual and cognitive distraction on driver’s anticipation in a simulated car following scenario. Transp Res Part F 2011;14 (6):555–66. 链接1

[ 9 ] Ou YK, Liu YC, Shih FY. Risk prediction model for drivers’ in-vehicle activities— application of task analysis and back-propagation neural network. Transp Res Part F 2013;18:83–93. 链接1

[10] Tas ÖS, Kuhnt F, Zöllner JM, Stiller C. Functional system architectures towards fully automated driving. In: Proceedings of 2016 IEEE Intelligent Vehicles Symposium (IV); 2016 Jun 19–22; Gotenburg, Sweden; 2016. p. 304–9. 链接1

[11] Burns LD. A vision of our transport future. Nature 2013;497(7448):181–2. 链接1

[12] Khastgir S, Dhadyalla G, Birrell S, Redmond S, Addinall R, Jennings P. Test scenario generation for driving simulators using constrained randomization technique. SAE technical paper. Washington, DC: SAE International; 2017. No.:2017-01-1672.

[13] Hubmann C, Becker M, Althoff D, Lenz D, Stiller C. Decision making for autonomous driving considering interaction and uncertain prediction of surrounding vehicles. In: Proceedings of 2017 IEEE Intelligent Vehicles Symposium (IV); 2017 Jun 11–14; Los Angeles, CA, USA; 2017. 链接1

[14] Urmson C, Anhalt J, Bagnell D, Baker C, Bittner R, Clark MN, et al. Autonomous driving in urban environments: boss and the urban challenge. J Field Robot 2008;25(8):425–66. 链接1

[15] Zhou J, Li P, Zhou Y, Wang B, Zang J, Meng L. Toward new-generation intelligent manufacturing. Engineering 2018;4(1):11–20. 链接1

[16] Rasouli A, Tsotsos JK. Autonomous vehicles that interact with pedestrians: a survey of theory and practice. IEEE Trans Intell Transp Syst 2020;21 (3):900–18. 链接1

[17] Jo K, Kim J, Kim D, Jang C, Sunwoo M. Development of autonomous car—part Ⅰ: distributed system architecture and development process. IEEE Trans Ind Electron 2014;61(12):7131–40. 链接1

[18] Noh S, An K. Decision-making framework for automated driving in highway environments. IEEE Trans Intell Transp Syst 2018;19(1):58–71. 链接1

[19] Shalev-Shwartz S, Shammah S, Shashua A. Safe, multi-agent, reinforcement learning for autonomous driving. 2016. arXiv:1610.03295.

[20] Sun Z, Huang Z, Zhu Q, Li X, Liu D. High-precision motion control method and practice for autonomous driving in complex off-road environments. In: Proceedings of 2016 IEEE Intelligent Vehicles Symposium (IV); 2016 Jun 19– 22; Gothenburg, Sweden; 2016. p. 767–73. 链接1

[21] Ruan Y, Chen H, Li J. Longitudinal planning and control method for autonomous vehicles based on a new potential field model. SAE technical paper. Washington, DC: SAE International; 2017. No: 2017-01-1955.

[22] González D, Pérez J, Milanés V, Nashashibi F. A review of motion planning techniques for automated vehicles. IEEE Trans Intell Transp Syst 2016;17 (4):1135–45. 链接1

[23] Spielberg NA, Brown M, Kapania NR, Kegelman JC, Gerdes JC. Neural network vehicle models for high-performance automated driving. Sci Robot 2019;4 (28):eaaw1975. 链接1

[24] Mohanan MG, Salgoankar A. A survey of robotic motion planning in dynamic environments. Robot Auton Syst 2018;100:171–85. 链接1

[25] Heaven D. Why deep-learning AIs are so easy to fool. Nature 2019;574 (7777):163–6. 链接1

[26] Chiang HTL, HomChaudhuri B, Smith L, Tapia L. Safety, challenges, and performance of motion planners in dynamic environments. In: Amato NM, Hager G, Thomas S, Torres-Torriti M, editors. Robotics research. Cham: Springer; 2020. p. 793–808. 链接1

[27] Chen G, Cao H, Conradt J, Tang H, Rohrbein F, Knoll A. Event-based neuromorphic vision for autonomous driving: a paradigm shift for bioinspired visual sensing and perception. IEEE Signal Process Mag 2020;37 (4):34–49. 链接1

[28] Behere S, Torngren M. A functional architecture for autonomous driving. In: Proceedings of the First International Workshop on Automotive Software Architecture (WASA); 2015 May 4–8; Montreal, QC, Canada; 2015. 链接1

[29] Prakash R, Prakash O, Prakash S, Abhishek P, Gandotra S. Global workspace model of consciousness and its electromagnetic correlates. Ann Indian Acad Neurol 2008;11(3):146–53. 链接1

[30] Oizumi M, Albantakis L, Tononi G. From the phenomenology to the mechanisms of consciousness: integrated information theory 3.0. PLoS Comput Biol 2014;10(5):e1003588. 链接1

[31] Tsien H. [On systems engineering]. Changsha: Hunan Science and Technology Press; 1988. Chinese.

[32] Zhu SC. Towards general artificial intelligence: from big data to big task. In: Proceedings of 2019 BAAI; 2019 Oct 31–Nov 1; Beijing: China National Convention Center; 2019.

[33] Zhu M, Wang X, Wang Y. Human-like autonomous car-following model with deep reinforcement learning. Transp Res Part C 2018;97:348–68. 链接1

[34] Wang J, Wu J, Zheng X, Ni D, Li K. Driving safety field theory modeling and its application in pre-collision warning system. Transp Res Part C 2016;72: 306–24. 链接1

[35] Aven T. A risk concept applicable for both probabilistic and non-probabilistic perspectives. Saf Sci 2011;49(8–9):1080–6. 链接1

[36] Wang J, Huang H, Li Y, Zhou H, Liu J, Xu Q. Driving risk assessment based on naturalistic driving study and driver attitude questionnaire analysis. Accid Anal Prev 2020;145:105680. 链接1

[37] Siburg KF. The principle of least action in geometry and dynamics. Berlin: Springer-Verlag; 2004. 链接1

[38] Gururajan MP. The lazy universe: an introduction to the principle of least action, by J. Coopersmith. Contemp Phys 2018;59(1):95–6. 链接1

[39] Zheng X, Huang H, Wang J, Xu Q. Behavioral decision-making model based on driving risk assessment for intelligent vehicle development. Comput Aided Civ Infrastruct Eng 2019;36(7):820–37. 链接1

[40] Huang H, Zheng X, Yang Y, Liu J, Liu W, Wang J. An integrated architecture for intelligence evaluation of automated vehicles. Accid Anal Prev 2020;145:105681. 链接1

相关研究