期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2022年 第16卷 第9期 doi: 10.1016/j.eng.2020.11.010

荧光显纳镜在神经科学中的应用

Center for Artificial-Intelligence Nanophotonics, School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China

收稿日期: 2020-07-04 修回日期: 2020-11-10 录用日期: 2020-11-30 发布日期: 2021-05-03

下一篇 上一篇

摘要

荧光显纳技术提供了克服光学显微镜中衍射极限分辨率障碍的成像技术,从而开辟了生物医学成像研究领域(尤其在神经科学领域)。本文回顾了最重要的荧光显纳技术,包括描述了该技术在阐明蛋白质结构和流动性、神经活动过程中涉及突触参数的实时测定、三维成像和纳米级神经活动跟踪等方面的应用。最后,讨论了荧光显纳镜的前景,特别关注该技术在神经科学中与相关技术(如机器学习)的结合。

图片

图1

图2

图3

图4

图5

参考文献

[ 1 ] Purves D, Augustine GJ, Fitzpatrick D, Hall WC, Lamantia AS, McNamara JO, et al. Neuroscience. 3rd ed. Massachusetts: Sinauer Associates Inc Publishers; 2004.

[ 2 ] Zhou Q, Lai Y, Bacaj T, Zhao M, Lyubimov AY, Uervirojnangkoorn M, et al. Architecture of the synaptotagmin‒SNARE machinery for neuronal exocytosis. Nature 2015;525(7567):62‒7. 链接1

[ 3 ] Südhof TC, Rothman JE. Membrane fusion: grappling with SNARE and SM proteins. Science 2009;323(5913):474‒7. 链接1

[ 4 ] Hinrichsen L, Meyerholz A, Groos S, Ungewickell EJ. Bending a membrane: how clathrin affects budding. Proc Natl Acad Sci USA 2006;103(23):8715‒20. 链接1

[ 5 ] Thanawala MS, Regehr WG. Determining synaptic parameters using high-frequency activation. J Neurosci Methods 2016;264:136‒52. 链接1

[ 6 ] Gustafsson MGL. Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. J Microsc 2000;198(Pt 2):82‒7. 链接1

[ 7 ] Gustafsson MGL, Shao L, Carlton PM, Wang CJR, Golubovskaya IN, Cande WZ, et al. Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination. Biophys J 2008;94(12):4957‒70. 链接1

[ 8 ] Schermelleh L, Carlton PM, Haase S, Shao L, Winoto L, Kner P, et al. Subdiffraction multicolor imaging of the nuclear periphery with 3D structured illumination microscopy. Science 2008;320(5881):1332‒6. 链接1

[ 9 ] Hell SW, Wichmann J. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt Lett 1994;19(11):780‒2. 链接1

[10] Hell SW, Kroug M. Ground-state-depletion fluorscence microscopy: a concept for breaking the diffraction resolution limit. Appl Phys B 1995;60(5):495‒7. 链接1

[11] Rust MJ, Bates M, Zhuang X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat Methods 2006;3(10):793‒6. 链接1

[12] Betzig E, Patterson GH, Sougrat R, Lindwasser OW, Olenych S, Bonifacino JS, et al. Imaging intracellular fluorescent proteins at nanometer resolution. Science 2006;313(5793):1642‒5. 链接1

[13] Hess ST, Girirajan TPK, Mason MD. Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophys J 2006;91(11):4258‒72. 链接1

[14] Balzarotti F, Eilers Y, Gwosch KC, Gynnå AH, Westphal V, Stefani FD, et al. Nanometer resolution imaging and tracking of fluorescent molecules with minimal photon fluxes. Science 2017;355(6325):606‒12. 链接1

[15] Eilers Y, Ta H, Gwosch KC, Balzarotti F, Hell SW. MINFLUX monitors rapid molecular jumps with superior spatiotemporal resolution. Proc Natl Acad Sci USA 2018;115(24):6117‒22. 链接1

[16] Gwosch KC, Pape JK, Balzarotti F, Hoess P, Ellenberg J, Ries J, et al. MINFLUX nanoscopy delivers 3D multicolor nanometer resolution in cells. Nat Methods 2020;17(2):217‒24. 链接1

[17] Sigal YM, Zhou R, Zhuang X. Visualizing and discovering cellular structures with super-resolution microscopy. Science 2018;361(6405):880‒7. 链接1

[18] Valeur B, Berberan-Santos MN. Molecular fluorescence: principles and applications. 2nd ed. Weinheim: Wiley-VCH Verlag GmbH; 2012. 链接1

[19] Gu M. Principles of three-dimensional imaging in confocal microscopes. Singapore: World Scientific; 1996. 链接1

[20] Zipfel WR, Williams RM, Webb WW. Nonlinear magic: multiphoton microscopy in the biosciences. Nat Biotechnol 2003;21(11):1369‒77. 链接1

[21] Gugel H, Bewersdorf J, Jakobs S, Engelhardt J, Storz R, Hell SW. Cooperative 4Pi excitation and detection yields sevenfold sharper optical sections in live-cell microscopy. Biophys J 2004;87(6):4146‒52. 链接1

[22] Wang BK, Barbiero M, Zhang Q, Gu M. Super-resolution optical microscope: principle, instrumentation, and application. Front Inf Technol Electron Eng 2019;20(5):608‒30. 链接1

[23] Chen F, Tillberg PW, Boyden ES. Optical imaging. Expansion microscopy. Science 2015;347(6221):543‒8. 链接1

[24] Tillberg PW, Chen F, Piatkevich KD, Zhao Y, Yu CC, English BP, et al. Protein-retention expansion microscopy of cells and tissues labeled using standard fluorescent proteins and antibodies. Nat Biotechnol 2016;34(9):987‒92. 链接1

[25] Chen F, Wassie AT, Cote AJ, Sinha A, Alon S, Asano S, et al. Nanoscale imaging of RNA with expansion microscopy. Nat Methods 2016;13(8):679‒84. 链接1

[26] Zhao Y, Bucur O, Irshad H, Chen F, Weins A, Stancu AL, et al. Nanoscale imaging of clinical specimens using pathology-optimized expansion microscopy. Nat Biotechnol 2017;35(8):757‒64. 链接1

[27] Murakami TC, Mano T, Saikawa S, Horiguchi SA, Shigeta D, Baba K, et al. A three-dimensional single-cell-resolution whole-brain atlas using CUBIC-X expansion microscopy and tissue clearing. Nat Neurosci 2018;21(4):625‒37. 链接1

[28] Schneider J, Zahn J, Maglione M, Sigrist SJ, Marquard J, Chojnacki J, et al. Ultrafast, temporally stochastic STED nanoscopy of millisecond dynamics. Nat Methods 2015;12(9):827‒30. 链接1

[29] Jones SA, Shim SH, He J, Zhuang X. Fast, three-dimensional super-resolution imaging of live cells. Nat Methods 2011;8(6):499‒505. 链接1

[30] Huang F, Hartwich TMP, Rivera-Molina FE, Lin Y, Duim WC, Long JJ, et al. Video-rate nanoscopy using sCMOS camera-specific single-molecule localization algorithms. Nat Methods 2013;10(7):653‒8. 链接1

[31] Li D, Shao L, Chen BC, Zhang X, Zhang M, Moses B, et al. Extended-resolution structured illumination imaging of endocytic and cytoskeletal dynamics. Science 2015;349(6251):aab3500. 链接1

[32] Ehmann N, Sauer M, Kittel RJ. Super-resolution microscopy of the synaptic active zone. Front Cell Neurosci 2015;9:7. 链接1

[33] Liu KSY, Siebert M, Mertel S, Knoche E, Wegener S, Wichmann C, et al. RIM-binding protein, a central part of the active zone, is essential for neurotransmitter release. Science 2011;334(6062):1565‒9. 链接1

[34] Ehmann N, van de Linde S, Alon A, Ljaschenko D, Keung XZ, Holm T, et al. Quantitative super-resolution imaging of Bruchpilot distinguishes active zone states. Nat Commun 2014;5:4650. 链接1

[35] Sieber JJ, Willig KI, Heintzmann R, Hell SW, Lang T. The SNARE motif is essential for the formation of syntaxin clusters in the plasma membrane. Biophys J 2006;90(8):2843‒51. 链接1

[36] Donnert G, Keller J, Medda R, Andrei MA, Rizzoli SO, Lührmann R, et al. Macromolecular-scale resolution in biological fluorescence microscopy. Proc Natl Acad Sci USA 2006;103(31):11440‒5. 链接1

[37] Kellner RR, Baier CJ, Willig KI, Hell SW, Barrantes FJ. Nanoscale organization of nicotinic acetylcholine receptors revealed by stimulated emission depletion microscopy. Neuroscience 2007;144(1):135‒43. 链接1

[38] Kornau HC, Schenker LT, Kennedy MB, Seeburg PH. Domain interaction between NMDA receptor subunits and the postsynaptic density protein PSD-95. Science 1995;269(5231):1737‒40. 链接1

[39] Kim E, Naisbitt S, Hsueh YP, Rao A, Rothschild A, Craig AM, et al. GKAP, a novel synaptic protein that interacts with the guanylate kinase-like domain of the PSD-95/SAP90 family of channel clustering molecules. J Cell Biol 1997;136(3):669‒78. 链接1

[40] Naisbitt S, Kim E, Tu JC, Xiao B, Sala C, Valtschanoff J, et al. Shank, a novel family of postsynaptic density proteins that binds to the NMDA receptor/PSD-95/GKAP complex and cortactin. Neuron 1999;23(3):569‒82. 链接1

[41] Xiao B, Tu JC, Petralia RS, Yuan JP, Doan A, Breder CD, et al. Homer regulates the association of group 1 metabotropic glutamate receptors with multivalent complexes of homer-related, synaptic proteins. Neuron 1998;21(4):707‒16. 链接1

[42] Dani A, Huang B, Bergan J, Dulac C, Zhuang X. Superresolution imaging of chemical synapses in the brain. Neuron 2010;68(5):843‒56. 链接1

[43] MacGillavry HD, Song Y, Raghavachari S, Blanpied TA. Nanoscale scaffolding domains within the postsynaptic density concentrate synaptic AMPA receptors. Neuron 2013;78(4):615‒22. 链接1

[44] Tang AH, Chen H, Li TP, Metzbower SR, MacGillavry HD, Blanpied TA. A trans-synaptic nanocolumn aligns neurotransmitter release to receptors. Nature 2016;536(7615):210‒4. 链接1

[45] Fukata Y, Dimitrov A, Boncompain G, Vielemeyer O, Perez F, Fukata M. Local palmitoylation cycles define activity-regulated postsynaptic subdomains. J Cell Biol 2013;202(1):145‒61. 链接1

[46] Masch JM, Steffens H, Fischer J, Engelhardt J, Hubrich J, Keller-Findeisen J, et al. Robust nanoscopy of a synaptic protein in living mice by organic-fluorophore labeling. Proc Natl Acad Sci USA 2018;115(34):E8047‒56. 链接1

[47] Xu K, Zhong G, Zhuang X. Actin, spectrin, and associated proteins form a periodic cytoskeletal structure in axons. Science 2013;339(6118):452‒6. 链接1

[48] D’Este E, Kamin D, Göttfert F, El-Hady A, Hell SW. STED nanoscopy reveals the ubiquity of subcortical cytoskeleton periodicity in living neurons. Cell Rep2015;10(8):1246‒51. 链接1

[49] Zhong G, He J, Zhou R, Lorenzo D, Babcock HP, Bennett V, et al. Developmental mechanism of the periodic membrane skeleton in axons. eLife 2014;3:e04581. 链接1

[50] Chierico L, Joseph AS, Lewis AL, Battaglia G. Live cell imaging of membrane/cytoskeleton interactions and membrane topology. Sci Rep 2014;4:6056. 链接1

[51] Han B, Zhou R, Xia C, Zhuang X. Structural organization of the actin‒spectrin-based membrane skeleton in dendrites and soma of neurons. Proc Natl Acad Sci USA 2017;114(32):E6678‒85. 链接1

[52] D’Este E, Kamin D, Velte C, Göttfert F, Simons M, Hell SW. Subcortical cytoskeleton periodicity throughout the nervous system. Sci Rep 2016;6:22741. 链接1

[53] D’Este E, Kamin D, Balzarotti F, Hell SW. Ultrastructural anatomy of nodes of Ranvier in the peripheral nervous system as revealed by STED microscopy. Proc Natl Acad Sci USA 2017;114(2):E191‒9. 链接1

[54] Westphal V, Rizzoli SO, Lauterbach MA, Kamin D, Jahn R, Hell SW. Video-rate far-field optical nanoscopy dissects synaptic vesicle movement. Science 2008;320(5873):246‒9. 链接1

[55] Yeung C, Shtrahman M, Wu XL. Stick-and-diffuse and caged diffusion: a comparison of two models of synaptic vesicle dynamics. Biophys J 2007;92(7):2271‒80. 链接1

[56] Willig KI, Rizzoli SO, Westphal V, Jahn R, Hell SW. STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis. Nature 2006;440(7086):935‒9. 链接1

[57] Sigal YM, Speer CM, Babcock HP, Zhuang X. Mapping synaptic input fields of neurons with super-resolution imaging. Cell 2015;163(2):493‒505. 链接1

[58] Berning S, Willig KI, Steffens H, Dibaj P, Hell SW. Nanoscopy in a living mouse brain. Science 2012;335(6068):551. 链接1

[59] Long X, Colonell J, Wong AM, Singer RH, Lionnet T. Quantitative mRNA imaging throughout the entire Drosophila brain. Nat Methods 2017;14(7):703‒6. 链接1

[60] Wu Y, Ruan H, Dong Z, Zhao R, Yu J, Tang X, et al. Fluorescent polymer dot-based multicolor stimulated emission depletion nanoscopy with a single laser beam pair for cellular tracking. Anal Chem 2020;92(17):12088‒96. 链接1

[61] Zhang M, Fu Z, Li C, Liu A, Peng D, Xue F, et al. Fast super-resolution imaging technique and immediate early nanostructure capturing by a photoconvertible fluorescent protein. Nano Lett 2020;20(4):2197‒208. 链接1

[62] Ye Z, Yang W, Wang C, Zheng Y, Chi W, Liu X, et al. Quaternary piperazine-substituted rhodamines with enhanced brightness for super-resolution imaging. J Am Chem Soc 2019;141(37):14491‒5. 链接1

[63] Ye S, Guo J, Song J, Qu J. Achieving high-resolution of 21 nm for STED nanoscopy assisted by CdSe@ZnS quantum dots. Appl Phys Lett 2020;116(4):041101. 链接1

[64] Li D, Ni X, Zhang X, Liu L, Qu J, Ding D, et al. Aggregation-induced emission luminogen-assisted stimulated emission depletion nanoscopy for super-resolution mitochondrial visualization in live cells. Nano Res 2018;‍11(11):6023‒33. 链接1

[65] Zhang Z, Fang X, Liu Z, Liu H, Chen D, He S, et al. Semiconducting polymer dots with dual-enhanced NIR-IIa fluorescence for through-skull mouse-brain imaging. Angew Chem Int Ed Engl 2020;59(9):3691‒8. 链接1

[66] Chen C, Wang F, Wen S, Su QP, Wu MCL, Liu Y, et al. Multi-photon near-infrared emission saturation nanoscopy using upconversion nanoparticles. Nat Commun 2018;9(1):3290. 链接1

[67] Gu L, Li Y, Zhang S, Xue Y, Li W, Li D, et al. Molecular resolution imaging by repetitive optical selective exposure. Nat Methods 2019;16(11):1114‒8. 链接1

[68] Cnossen J, Hinsdale T, Thorsen RØ, Siemons M, Schueder F, Jungmann R, et al. Localization microscopy at doubled precision with patterned illumination. Nat Methods 2020;17(1):59‒63. 链接1

[69] Spahn C, Hurter F, Glaesmann M, Karathanasis C, Lampe M, Heilemann M. Protein-specific, multicolor and 3D STED imaging in cells with DNA-labeled antibodies. Angew Chem Int Ed Engl 2019;58(52):18835‒8. 链接1

[70] Wang X, Allen WE, Wright MA, Sylwestrak EL, Samusik N, Vesuna S, et al. Three-dimensional intact-tissue sequencing of single-cell transcriptional states. Science 2018;361(6400): eaat5691. 链接1

[71] Lee JH, Daugharthy ER, Scheiman J, Kalhor R, Yang JL, Ferrante TC, et al. Highly multiplexed subcellular RNA sequencing in situ. Science 2014;343(6177):1360‒3. 链接1

[72] Chen KH, Boettiger AN, Moffitt JR, Wang S, Zhuang X. Spatially resolved, highly multiplexed RNA profiling in single cells. Science 2015;348(6233):aaa6090. 链接1

[73] Shah S, Takei Y, Zhou W, Lubeck E, Yun J, Eng CHL, et al. Dynamics and spatial genomics of the nascent transcriptome by intron seqFISH. Cell 2018;174(2):363‒76.e16. 链接1

[74] Eng CHL, Lawson M, Zhu Q, Dries R, Koulena N, Takei Y, et al. Transcriptome-scale super-resolved imaging in tissues by RNA seqFISH+. Nature 2019;568(7751):235‒9. 链接1

[75] Deisseroth K. Optogenetics: 10 years of microbial opsins in neuroscience. Nat Neurosci 2015;18(9):1213‒25. 链接1

[76] Chen S, Weitemier AZ, Zeng X, He L, Wang X, Tao Y, et al. Near-infrared deep brain stimulation via upconversion nanoparticle-mediated optogenetics. Science 2018;359(6376):679‒84. 链接1

[77] Yu H, Zhang Q, Gu M. Three-dimensional direct laser writing of biomimetic neuron structures. Opt Express 2018;26(24):32111‒7. 链接1

[78] Gan Z, Cao Y, Evans RA, Gu M. Three-dimensional deep sub-diffraction optical beam lithography with 9 nm feature size. Nat Commun 2013;4:2061. 链接1

[79] Gruber A, Dräbenstedt A, Tietz C, Fleury L, Wrachtup J, von Borczyskowski C. Scanning confocal optical microscopy and magnetic resonance on single defect centers. Science 1997;276(5321):2012‒4. 链接1

[80] Barbiero M, Castelletto S, Gan X, Gu M. Spin-manipulated nanoscopy for single nitrogen-vacancy center localizations in nanodiamonds. Light Sci Appl 2017;6(11):e17085. 链接1

[81] Barry JF, Turner MJ, Schloss JM, Glenn DR, Song Y, Lukin MD, et al. Optical magnetic detection of single-neuron action potentials using quantum defects in diamond. Proc Natl Acad Sci USA 2016;113(49):14133‒8. 链接1

[82] Levene MJ, Dombeck DA, Kasischke KA, Molloy RP, Webb WW. In vivo multiphoton microscopy of deep brain tissue. J Neurophysiol 2004;91(4):1908‒12. 链接1

[83] Szabo V, Ventalon C, De Sars V, Bradley J, Emiliani V. Spatially selective holographic photoactivation and functional fluorescence imaging in freely behaving mice with a fiberscope. Neuron 2014;84(6):1157‒69. 链接1

[84] Low RJ, Gu Y, Tank DW. Cellular resolution optical access to brain regions in fissures: imaging medial prefrontal cortex and grid cells in entorhinal cortex. Proc Natl Acad Sci USA 2014;111(52):18739‒44. 链接1

[85] Attardo A, Fitzgerald JE, Schnitzer MJ. Impermanence of dendritic spines in live adult CA1 hippocampus. Nature 2015;523(7562):592‒6. 链接1

[86] Horton NG, Wang K, Kobat D, Clark CG, Wise FW, Schaffer CB, et al. In vivo three-photon microscopy of subcortical structures within an intact mouse brain. Nat Photonics 2013;7(3):205‒9. 链接1

[87] Kobat D, Durst ME, Nishimura N, Wong AW, Schaffer CB, Xu C. Deep tissue multiphoton microscopy using longer wavelength excitation. Opt Express 2009;17(16):13354‒64. 链接1

[88] Theer P, Denk W. On the fundamental imaging-depth limit in two-photon microscopy. J Opt Soc Am A 2006;23(12):3139‒49. 链接1

[89] Liu B, Lee HJ, Zhang D, Liao CS, Ji N, Xia Y, et al. Label-free spectroscopic detection of membrane potential using stimulated Raman scattering. Appl Phys Lett 2015;106(17):173704. 链接1

[90] Lee HJ, Zhang D, Jiang Y, Wu X, Shih PY, Liao CS, et al. Label-free vibrational spectroscopic imaging of neuronal membrane potential. J Phys Chem Lett 2017;8(9):1932‒6. 链接1

[91] Fu D, Yang W, Xie XS. Label-free imaging of neurotransmitter acetylcholine at neuromuscular junctions with stimulated Raman scattering. J Am Chem Soc 2017;139(2):583‒6. 链接1

[92] Ichimura T, Hayazawa N, Hashimoto M, Inouye Y, Kawata S. Tip-enhanced coherent anti-Stokes Raman scattering for vibrational nanoimaging. Phys Rev Lett 2004;92(22):220801. 链接1

[93] Lin J, Zi Jian Er K, Zheng W, Huang Z. Radially polarized tip-enhanced near-field coherent anti-Stokes Raman scattering microscopy for vibrational nano-imaging. Appl Phys Lett 2013;103(8):083705. 链接1

[94] Gong L, Wang H. Breaking the diffraction limit by saturation in stimulated-Raman-scattering microscopy: a theoretical study. Phys Rev A 2014;‍90(1):013818. 链接1

[95] Gong L, Wang H. Suppression of stimulated Raman scattering by an electromagnetically-induced-transparency-like scheme and its application for super-resolution microscopy. Phys Rev A 2015;92(2):023828. 链接1

[96] Gong L, Zheng W, Ma Y, Huang Z. Saturated stimulated-Raman-scattering microscopy for far-field superresolution bioimaging. Phys Rev Appl 2019;11(3):034041. 链接1

[97] Gong L, Zheng W, Ma Y, Huang Z. Higher-order coherent anti-Stokes Raman scattering microscopy realizes label-free super-resolution vibrational imaging. Nat Photonics 2020;14(2):115‒22. 链接1

[98] Ji N, Milkie DE, Betzig E. Adaptive optics via pupil segmentation for high-resolution imaging in biological tissues. Nat Methods 2010;7(2):141‒7. 链接1

[99] Booth MJ. Wavefront sensorless adaptive optics for large aberrations. Opt Lett 2007;32(1):5‒7. 链接1

[100] Burke D, Patton B, Huang F, Bewersdorf J, Booth MJ. Adaptive optics correction of specimen-induced aberrations in single-molecule switching microscopy. Optica 2015;2(2):177‒85. 链接1

[101] Tehrani KF, Xu J, Zhang Y, Shen P, Kner P. Adaptive optics stochastic optical reconstruction microscopy (AO-STORM) using a genetic algorithm. Opt Express 2015;23(10):13677‒92. 链接1

[102] Thomas B, Wolstenholme A, Chaudhari SN, Kipreos ET, Kner P. Enhanced resolution through thick tissue with structured illumination and adaptive optics. J Biomed Opt 2015;20(2):026006. 链接1

[103] Lenz MO, Sinclair HG, Savell A, Clegg JH, Brown ACN, Davis DM, et al. 3-D stimulated emission depletion microscopy with programmable aberration correction. J Biophotonics 2014;7(1‒2):29‒36.

[104] Horisaki R, Takagi R, Tanida J. Learning-based imaging through scattering media. Opt Express 2016;24(13):13738‒43. 链接1

[105] Nehme E, Weiss LE, Michaeli T, Schechtman Y. Deep-STORM: super-resolution single-molecule microscopy by deep learning. Optica 2018;5(4):458‒64. 链接1

[106] Wang H, Rivenson Y, Jin Y, Wei Z, Gao R, Günaydin H, et al. Deep learning enables cross-modality super-resolution in fluorescence microscopy. Nat Methods 2019;16(1):103‒10. 链接1

[107] Ren H, Shao W, Li Y, Salim F, Gu M. Three-dimensional vectorial holography based on machine learning inverse design. Sci Adv 2020;6(16):eaaz4261. 链接1

[108] Goi. E, Zhang Q, Chen X, Luan H, Gu M. Perspective on photonic memristive neuromorphic computing. PhotoniX 2020;1(1):3. 链接1

[109] Gu M, Fang X, Ren H, Goi E. Optically digitalized holography: a perspective for all-optical machine learning. Engineering 2019;5(3): 363‒5. 链接1

[110] Zhang Q, Yu H, Barbiero M, Wang B, Gu M. Artificial neural networks enabled by nanophotonics. Light Sci Appl 2019;8:42. 链接1

[111] Goi E, Chen X, Zhang Q, Cumming BP, Schoenhardt S, Luan H, et al. Nanoprinted high-neuron-density optical linear perceptrons performing near-infrared inference on a CMOS chip. Light Sci Appl 2021;10:40. 链接1

相关研究