期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2022年 第9卷 第2期 doi: 10.1016/j.eng.2020.12.018

含铬废水常温合成铬铁矿的结晶行为及稳定性

a Faculty of Land Resource Engineering, Kunming University of Science and Technology, Kunming 650093, China
b State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093, China
c School of Chemical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia

收稿日期: 2020-05-05 修回日期: 2020-12-07 录用日期: 2020-12-09 发布日期: 2021-03-04

下一篇 上一篇

摘要

铁氧体法不仅能净化含重金属废水,而且能从废水中回收有价金属。因此,铁氧体法被认为是一种处理含铬废水最具潜力的技术。然而,由于高的合成温度,该技术尚未在工业上得到广泛应用。本文对常温合成铬铁矿的可行性进行全面研究。考查了关键因素对出水水质、合成产物结晶行为和稳定性的影响。结果表明,经过常温铁氧体法处理后,废水中铬的去除率超过99.0%,上清液中铬的浓度达到污水排放标准。提高充气速率、搅拌速率和反应时间有利于稳定铬铁矿的形成。通过常温铁氧体法获得的颗粒结构致密,最大粒径可达52 μm。在合成过程中,铬逐渐地进入尖晶石晶体结构,合成铬铁矿的分子式为Fe3-xCrxO4,其中x约0.30。为阐明常温环境下铬铁矿的合成机理,提出了微观反应路径。本研究为铁氧体法在含铬废水净化和综合利用方面的工业应用奠定了基础。

图片

图1

图2

图3

图4

图5

图6

图7

图8

图9

图10

图11

图12

图13

图14

图15

图16

图17

图18

图19

图20

图21

参考文献

[ 1 ] Hemambika B, Kannan VR. Intrinsic characteristics of Cr6+-resistant bacteria isolated from an electroplating industry polluted soils for plant growthpromoting activities. Appl Biochem Biotechnol 2012;167(6):1653–67. 链接1

[ 2 ] Lv JF, Zhang HP, Tong X, Fan CL, Yang WT, Zheng YX. Innovative methodology for recovering titanium and chromium from a raw ilmenite concentrate by magnetic separation after modifying magnetic properties. J Hazard Mater 2017;325:251–60. 链接1

[ 3 ] Hashem MA, Momen MA, Hasan M, Nur-A-Tomal MS, Sheikh MH. Chromium removal from tannery wastewater using Syzygium cumini bark adsorbent. Int J Environ Sci Technol 2019;16(3):1395–404. 链接1

[ 4 ] Lytras G, Lytras C, Argyropoulou D, Dimopoulos N, Malavetas G, Lyberatos G. A novel two-phase bioreactor for microbial hexavalent chromium removal from wastewater. J Hazard Mater 2017;336:41–51. 链接1

[ 5 ] Louarrat M, Rahman AN, Bacaoui A, Yaacoubi A. Removal of chromium Cr(VI) of tanning effluent with activated carbon from tannery solid wastes. Am J of Phys Chem 2017;6(6):103–9. 链接1

[ 6 ] Ateeq M, Rehman HU, Kiani BH, Zareen S, Maqbool T, Ilyas BS, et al. Toxic effect of hexavalent chromium on the workers employed in chrome plating. J Entomol Zool Stud 2017;5(1):221–3. 链接1

[ 7 ] Lu X, Li B, Guo L, Zhang G, Wang P. Reduction and stabilization remediation of hexavalent chromium (Cr6+)-contaminated soil. Ekoloji 2019;28(107):973–80. 链接1

[ 8 ] Xie B, Shan C, Xu Z, Li X, Zhang X, Chen J, et al. One-step removal of Cr(VI) at alkaline pH by UV/sulfite process: reduction to Cr(III) and in situ Cr(III) precipitation. Chem Eng J 2017;308:791–7. 链接1

[ 9 ] Lv J, Tong X, Zheng Y, Xie X, Huang L. Reduction of Cr(VI) with a relative high concentration using different kinds of zero-valent iron powders: focusing on effect of carbon content and structure on reducibility. J Cent South Univ 2018;25(9):2119–30. Chinese. 链接1

[10] Lv J, Tong X, Zheng Y. Removal behavior of Cu(II) during Cr(VI) reduction by cast iron powder in absence and presence of ultrasound. Sep Sci Technol 2019;54(18):3164–73. 链接1

[11] Zhao Z, An H, Lin J, Feng M, Murugadoss V, Ding T, et al. Progress on the photocatalytic reduction removal of chromium contamination. Chem Rec 2019;19(5):873–82. 链接1

[12] Nezar S, Cherifi Y, Barras A, Addad A, Dogheche E, Saoula N, et al. Efficient reduction of Cr(VI) under visible light irradiation using CuS nanostructures. Arab J Chem 2019;12(2):215–24. 链接1

[13] Du XD, Yi XH, Wang P, Zheng W, Deng J, Wang CC. Robust photocatalytic reduction of Cr(VI) on UiO-66-NH2 (Zr/Hf) metal–organic framework membrane under sunlight irradiation. Chem Eng J 2019;356:393–9. 链接1

[14] Xia S, Song Z, Jeyakumar P, Shaheen SM, Rinklebe J, Ok YS, et al. A critical review on bioremediation technologies for Cr(VI)-contaminated soils and wastewater. Crit Rev Environ Sci Technol 2019;49(12):1027–78. 链接1

[15] Kumar V, Dwivedi SK. Hexavalent chromium reduction ability and bioremediation potential of Aspergillus flavus CR500 isolated from electroplating wastewater. Chemosphere 2019;237:124567. 链接1

[16] Sharma S, Malaviya P. Bioremediation of tannery wastewater by chromium resistant novel fungal consortium. Ecol Eng 2016;91:419–25. 链接1

[17] Papassiopi N, Vaxevanidou K, Christou C, Karagianni E, Antipas GS. Synthesis, characterization and stability of Cr(III) and Fe(III) hydroxides. J Hazard Mater 2014;264:490–7. 链接1

[18] Golder AK, Chanda AK, Samanta AN, Ray S. Removal of hexavalent chromium by electrochemical reduction–precipitation: investigation of process performance and reaction stoichiometry. Separ Purif Tech 2011;76(3):345–50. 链接1

[19] Chen J, Xu S, Guo S. National hazardous waste directory. J Build Mater 2016 (4):1–11. Chinese. 链接1

[20] Li C, Yu J, Li W, He Y, Qiu Y, Li P, et al. Immobilization, enrichment and recycling of Cr(VI) from wastewater using a red mud/carbon material to produce the valuable chromite (FeCr2O4). Chem Eng J 2018;350:1103–13. 链接1

[21] Erdem M, Tumen F. Chromium removal from aqueous solution by the ferrite process. J Hazard Mater 2004;109(1–3):71–7. 链接1

[22] Pei G, Wei Z, Fu H, Liu J, Yu F. Optimization of hexavalent chromium removal from wastewater by ferrite precipitation. J Residuals Sci Technol 2016;13(S2): S85–91. 链接1

[23] Song X, Wang S, Lu J. Removal of chromium and nickel ions from synthetic solution by the ferrite process. Adv Mater Res 2010;113–116:2251–4. 链接1

[24] Tu YJ, Chang CK, You CF, Wang SL. Treatment of complex heavy metal wastewater using a multi-staged ferrite process. J Hazard Mater 2012;209– 210:379–84. 链接1

[25] Barrado E, Prieto F, Medina J, López FA. Characterisation of solid residues obtained on removal of Cr from waste water. J Alloys Compd 2002;335(1– 2):203–9. 链接1

[26] Chang LY. Alternative chromium reduction and heavy metal precipitation methods for industrial wastewater. Environ Prog 2003;22(3):174–82. 链接1

[27] Lou JC, Huang YJ, Han JY. Treatment of printed circuit board industrial wastewater by Ferrite process combined with Fenton method. J Hazard Mater 2009;170(2–3):620–6. 链接1

[28] Ministry of Ecology and Environment of the People’s Republic of China. HJ/T 299–2007: Solid waste-extraction procedure for leaching toxicity-sulphuric acid & nitric acid method. Chinese standard. Beijing: China Environmental Science Press; 2007. Chinese. 链接1

[29] Ministry of Ecology and Environment of the People’s Republic of China. HJ 557–2009: Solid waste-extraction procedure for leaching toxicity-horizontal vibration method. Chinese standard. Beijing: China Environmental Science Press; 2010. Chinese. 链接1

[30] Qin L, Li Q, Wang T. Comparison of hexavalent chromium leaching efficacy of different methods from chromite ore processing residue. Inorg Chem Ind 2012;44(2):51–2. Chinese. 链接1

[31] Mandaokar SS, Dharmadhikari DM, Dara SS. Retrieval of heavy metal ions from solution via ferritisation. Environ Pollut 1994;83(3):277–82. 链接1

[32] Tamaura Y, Sasao T, Abe M, Itoh T. Ferrite formation in aqueous solution at 100–200 C. J Colloid Interface Sci 1990;136(1):242–8. 链接1

[33] Charoenjiraphat T, Amanthigo Y. Study on heavy metal (lead, cadmium and chromium) treatment technique from artificial wastewater by ferrite process. Technical report. Bangkok: Department of Industrial Chemistry; 1997. 链接1

[34] Ministry of Ecology and Environment of the People’s Republic of China. GB 8978–1996: Integrated wastewater discharge standard. Chinese standard. Beijing: China Environmental Science Press; 1998. Chinese. 链接1

[35] Perales-Pérez O, Umetsu Y. ORP-monitored magnetite formation from aqueous solutions at low temperatures. Hydrometallurgy 2000;55 (1):35–56. 链接1

[36] Blázquez G, Hernáinz F, Calero M, Martín-Lara M, Tenorio G. The effect of pH on the biosorption of Cr(III) and Cr(VI) with olive stone. Chem Eng J 2009;148 (2–3):473–9. 链接1

[37] Yun YS, Park D, Park JM, Volesky B. Biosorption of trivalent chromium on the brown seaweed biomass. Environ Sci Technol 2001;35(21):4353–8. 链接1

[38] Liang C, Liang CP, Chen CC. pH dependence of persulfate activation by EDTA/ Fe(III) for degradation of trichloroethylene. J Contam Hydrol 2009;106(3– 4):173–82. 链接1

[39] Lou JC, Tu YJ. Incinerating volatile organic compounds with ferrospinel catalyst MnFe2O4: an example with isopropyl alcohol. J Air Waste Manag Assoc 2005;55(12):1809–15. 链接1

[40] Martin RB. Fe3+ and Al3+ hydrolysis equilibria. Cooperativity in Al3+ hydrolysis reactions. J Inorg Biochem 1991;44(2):141–7. 链接1

[41] More SS, Kadam RH, Kadam AB, Shite AR, Mane DR, Jadhav KM. Cation distribution in nanocrystalline Al3+ and Cr3+ co-substituted CoFe2O4. J Alloys Compd 2010;502(2):477–9. 链接1

相关研究