期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2022年 第15卷 第8期 doi: 10.1016/j.eng.2020.12.024

医疗机构中用于控制空气传播传染病的个体患者通风隔离罩

a CSIRO Energy, Melbourne, VIC 3169, Australia
b Western Health, Melbourne, VIC 3021, Australia
c School of Public Health, The University of Sydney, Sydney, NSW 2006, Australia
d Centre for Integrated Critical Care, The University of Melbourne, Melbourne, VIC 3010, Australia
e The Western Australian School of Mines: Minerals, Energy and Chemical Engineering, Curtin University, Perth, WA 6102, Australia
f Department of Mechanical Engineering, City University of Hong Kong, Hong Kong 999077, China
g Department of Mechanical Engineering, The University of Melbourne, Melbourne, VIC 3010, Australia

收稿日期: 2021-09-24 修回日期: 2021-10-28 录用日期: 2021-12-17 发布日期: 2022-06-15

下一篇 上一篇

摘要

作为一种局部排气通风(LEV)系统,个体患者通风(VIP)隔离罩用于将患者的空气排放物与医护人员(HCW)呼吸的空气进行分离,为减少医院获得性感染(HAI)提供了一种新的途径。最近的研究结果表明,对于典型的患者排放的气溶胶,VIP 隔离罩提供的保护与N95 口罩相当。与口罩不同的是,隔离罩的性能可以被很容易地监控,HCW可以通过警报收到故障提醒。适当使用这些相对简单的设备既可以减少感染控制对个人防护设备(PPE)的依赖,又可以为医院和诊所提供低成本、高能效的防护形式。尽管新冠病毒肺炎(COVID-19)加速了VIP 隔离罩的开发和部署,但这些设备目前仍是一项不成熟的技术。本文描述了VIP隔离罩的现状,并确定了需要进一步开发的方面,包括设备设计和相关使用规则。VIP隔离罩的概念可扩展为为个体患者提供清洁的条件和对其他环境因素如温度和湿度进行个性化控制。

图片

图1

图2

图3

图4

图5

参考文献

[ 1 ] Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet 2020;395(10223):507‒13. 链接1

[ 2 ] Cucinotta D, Vanelli M. WHO declares COVID-19 a pandemic. Acta Biomed 2020;91(1):157‒60.

[ 3 ] Cummings MJ, Baldwin MR, Abrams D, Jacobson SD, Meyer BJ, Balough EM, et al. Epidemiology, clinical course, and outcomes of critically ill adults with COVID-19 in New York City: a prospective cohort study. Lancet 2020;395(10239):1763‒70. 链接1

[ 4 ] Ñamendys-Silva SA. Respiratory support for patients with COVID-19 infection. Lancet Respir Med 2020;8(4):e18. 链接1

[ 5 ] Adir Y, Segol O, Kompaniets D, Ziso H, Yaffe Y, Bergman I, et al. COVID-19: minimising risk to healthcare workers during aerosol-producing respiratory therapy using an innovative constant flow canopy. Eur Respir J 2020;55(5):2001017. 链接1

[ 6 ] Ventilated headboards [Internet]. Atlanta: Centers for Disease Control and Prevention; 2020 [cited 2020 May 23]. Available from: https://www.cdc.gov/niosh/topics/healthcare/engcontrolsolutions/ventilated-headboard.html. 链接1

[ 7 ] McGain F, Humphries RS, Lee JH, Schofield F, French C, Keywood MD, et al. Aerosol generation related to respiratory interventions and the effectiveness of a personal ventilation hood. Crit Care Resusc 2020;22(3):212‒20.

[ 8 ] Patel J. A design for individual vented enclosures for infection control in hospitals with SARS-CoV-2 infected patients [Internet]. 2020 [cited 2020 Jun 7]. Available from: http://ventilatedhood.maifield.net/index.html. 链接1

[ 9 ] Cápsula Vanessa [Internet]. Samel Assistência Médica; 2020 [cited 2020 May 27]. Available from: https://capsulavanessa.samel.com.br/. Portuguese. 链接1

[10] Convissar D, Chang CY, Choi WE, Chang MG, Bittner EA. The vacuum assisted negative pressure isolation hood (VANISH) system: novel application of the Stryker NeptuneTM suction machine to create COVID-19 negative pressure isolation environments. Cureus 2020;12(5):e8126.

[11] Tang S, Mao Y, Jones RM, Tan Q, Ji JS, Li N, et al. Aerosol transmission of SARSCoV-2? Evidence, prevention and control. Environ Int 2020;144:106039. 链接1

[12] Sommerstein R, Fux CA, Vuichard-Gysin D, Abbas M, Marschall J, Balmelli C, et al. Risk of SARS-CoV-2 transmission by aerosols, the rational use of masks, and protection of healthcare workers from COVID-19. Antimicrob Resist Infect Control 2020;9(1):100. 链接1

[13] Stockwell RE, Ballard EL, O’Rourke P, Knibbs LD, Morawska L, Bell SC. Indoor hospital air and the impact of ventilation on bioaerosols: a systematic review. J Hosp Infect 2019;103(2):175‒84. 链接1

[14] Nielsen PV. Control of airborne infectious diseases in ventilated spaces. J R Soc Interface 2009;6(Suppl 6):S747‒55. 链接1

[15] Gamage B, Moore D, Copes R, Yassi A, Bryce E; BC Interdisciplinary Respiratory Protection Study Group. Protecting health care workers from SARS and other respiratory pathogens: a review of the infection control literature. Am J Infect Control 2005;33(2):114‒21. 链接1

[16] Bhagat RK, Linden PF. Displacement ventilation: a viable ventilation strategy for makeshift hospitals and public buildings to ontain COVID-19 and other airborne diseases. Roy Soc Open Sci 2020;7(9):200680. 链接1

[17] Yuen PL, Yam R, Yung R, Choy KL. Fast-track ventilation strategy to cater for pandemic patient isolation surges. J Hosp Infect 2012;81(4):246‒50. 链接1

[18] Dungi SR, Mead KR, Ghia U, Gressel M. Effectiveness of a local ventilation/filtration intervention for health-care worker exposure reduction to airborne infection in a hospital room. In: 2015 ASHRAE Winter Conference; 2015 Jan 24‒28; Chicago, IL, USA; 2015.

[19] Hierarchy of controls [Internet]. Atlanta: Centers for Desiese Control and Prevention; 2020 [cited 2020 Jun 6]. Available from: https://www.‍cdc‍.‍gov/niosh/topics/hierarchy. 链接1

[20] Devi S. FRONTLINE: a new treatment facility for Ebola virus disease. Lancet 2018;392(10163):2428. 链接1

[21] ArchitectsRaskin L., engineers, and physicians develop COVID-19 patient isolation hood [Internet]. Brooklyn: BNP Media; 2020 Apr 14 [cited 2020 May 23]. Available from: https://www.‍architecturalrecord.‍com/articles/14570-architects-engineers-and-physicians-develop-covid-19-patient-isolation-hood. 链接1

[22] AirVENT: a personal negative pressure hood for containment, treatment, and removal of aerosolized viral contamination [Internet]. New York City: New York University Tandan; 2020 [cited 2020 May 23]. Available from: http://engineering.nyu.edu/mechatronics/covid-19/airvent.php. 链接1

[23] Creating a biohazard space for COVID19 intubation: a COVID intubation tent/box [Internet]. Your Design Medical; 2020 [cited 2020 May 31]. Available from: https://yourdesignmedical.com/blogs/making-a-safe-intubation-spacefor-covid19/creating-a-biohazard-space. 链接1

[24] Lang AL, Shaw KM, Lozano R, Wang J. Effectiveness of a negative-pressure patient isolation hood shown using particle count. Br J Anaesth 2020;125(3):e295‒6. 链接1

[25] English TR. Engineers’ perspectives on hospital ventilation [Internet]. HPAC Engineering; 2014 May 2 [cited 2020 May 31]. Available from: https://www.hpac.‍com/iaq-ventilation/article/20927589/engineers-perspectives-onhospital-ventilation. 链接1

[26] Victorian Advisory Committee on Infection Control. Guidelines for the classification and design of isolation rooms in health care facilities. Melbourne: State Government of Victoria; 2007.

[27] Azimi P, Stephens B. HVAC filtration for controlling infectious airborne disease transmission in indoor environments: predicting risk reductions and operational costs. Build Environ 2013;70:150‒60. 链接1

[28] Lim T, Cho J, Kim BS. Predictions and measurements of the stack effect on indoor airborne virus transmission in a high-rise hospital building. Build Environ 2011;46(12):2413‒24. 链接1

[29] Mui KW, Wong LT, Wu CL, Lai ACK. Numerical modeling of exhaled droplet nuclei dispersion and mixing in indoor environments. J Hazard Mater 2009;167(1‒3):736‒44.

[30] Cho J. Investigation on the contaminant distribution with improved ventilation system in hospital isolation rooms: effect of supply and exhaust air diffuser configurations. Appl Therm Eng 2019;148:208‒18. 链接1

[31] Hayashi T, Ishizu Y, Kato S, Murakami S. CFD analysis on characteristics of contaminated indoor air ventilation and its application in the evaluation of the effects of contaminant inhalation by a human occupant. Build Environ 2002;37(3):219‒30. 链接1

[32] Rui Z, Guangbei T, Jihong L. Study on biological contaminant control strategies under different ventilation models in hospital operating room. Build Environ 2008;43(5):793‒803. 链接1

[33] Berlanga FA, de Adana MR, Olmedo I, Villafruela JM, San José JF, Castro F. Experimental evaluation of thermal comfort, ventilation performance indices and exposure to airborne contaminant in an airborne infection isolation room equipped with a displacement air distribution system. Energy Build 2018;‍158:209‒21. 链接1

[34] Cunha M, Silva N. Hospital noise and patients’ wellbeing. Procedia Soc Behav Sci 2015;171:246‒51. 链接1

[35] Reiling J, Hughes RG, Murphy MR. The impact of facility design on patient safety. In: Hughes RG, editor. Patient safety and quality: an evidence-based handbook for nurses. Rockville: Agency for Healthcare Research and Quality; 2008.

相关研究