期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2022年 第12卷 第5期 doi: 10.1016/j.eng.2021.01.011

纺织品等离子体辅助抗菌整理技术概述

a Deakin University, Institute for Frontier Materials, Geelong, Victoria, 3216, Australia

b Textile Engineering Department, Yazd University, Yazd, Iran

收稿日期: 2020-09-08 修回日期: 2020-11-30 录用日期: 2021-01-19 发布日期: 2021-04-01

下一篇 上一篇

摘要

新冠病毒肺炎疫情的大流行,使得抗菌纺织品的重要性以及人们对其需求达到了新的高度。除了医疗目的,抗菌纺织品还可以成为普通人对抗微生物的自我防御实体。抗菌纺织品可以有效地防止微生物在全世界的传播。纺织品的传统抗菌整理工艺采用的是湿式处理方法,即采用填充—干燥—固化或排气技术。但纺织品湿处理行业是世界范围内引起环境污染的主要原因之一,这一点令人极为担忧。鉴于目前和近期的高需求,将等离子体纳入抗菌整理工艺,以实现高效率的生产,同时保持一个安全的环境,是当务之急。因此,本文通过对近期研究的批判性分析,回顾了等离子体在纺织品抗菌整理技术中的应用原理,并强调了用于实际应用的等离子体技术的类型和机制。

图片

图1

图2

图3

图4

图5

图6

图7

图8

图9

图10

图11

图12

图13

图14

图15

参考文献

[ 1 ] Chauhan A, Das A, Kharkwal H, Kharkwal AC, Varma A. Impact of microorganisms on environment and health. In: Chauhan AK, Varma A, editors. Microbes: health and environment. New Delhi: I.K. International Publishing House Pvt. Ltd.; 2006. p. 1‒12.

[ 2 ] Nayak R, Padhye R. Antimicrobial finishes for textiles. In: Paul R, editor. Functional finishes for textiles: improving comfort, performance and protection. Amsterdam: Woodhead Publishing Ltd. 2014. p. 361‒85. 链接1

[ 3 ] Iyigundogdu ZU, Demir O, Asutay AB, Sahin F. Developing novel antimicrobial and antiviral textile products. Appl Biochem Biotechnol 2017;181(3):1155‒66. 链接1

[ 4 ] Son WK, Youk JH, Lee TS, Park WH. Preparation of antimicrobial ultrafine cellulose acetate fibers with silver nanoparticles. Macromol Rapid Commun 2004;25(18):1632‒7. 链接1

[ 5 ] Anita S, Ramachandran T, Rajendran R, Koushik CV, Mahalakshmi M. A study of the antimicrobial property of encapsulated copper oxide nanoparticles on cotton fabric. Text Res J 2011;81(10):1081‒8. 链接1

[ 6 ] Cerkez I, Kocer HB, Worley SD, Broughton RM, Huang TS. N-halamine biocidal coatings via a layer-by-layer assembly technique. Langmuir 2011;27(7):4091‒7. 链接1

[ 7 ] Xing Y, Yang X, Dai J. Antimicrobial finishing of cotton textile based on water glass by sol‒gel method. J Sol-Gel Sci Technol 2007;43(2):187‒92. 链接1

[ 8 ] Ferrero F, Periolatto M. Antimicrobial finish of textiles by chitosan UV-curing. J Nanosci Nanotechnol 2012;12(6):4803‒10. 链接1

[ 9 ] Perelshtein I, Applerot G, Perkas N, Wehrschetz-Sigl E, Hasmann A, Guebitz GM, et al. Antibacterial properties of an in situ generated and simultaneously deposited nanocrystalline ZnO on fabrics. ACS Appl Mater Interfaces 2009;1(2):361‒6. 链接1

[10] Mazloumpour M, Malshe P, El-Shafei A, Hauser P. Conferring durable antimicrobial properties on nonwoven polypropylene via plasma-assisted graft polymerization of DADMAC. Surf Coat Technol 2013;224:1‒7. 链接1

[11] Haji A, Naebe M. Cleaner dyeing of textiles using plasma treatment and natural dyes: a review. J Cleaner Prod 2020;265:121866. 链接1

[12] Cornelius C, McCord M, Bourham M, Hauser P. Atmospheric pressure plasma grafting of a vinyl-quaternary compound to nonwoven polypropylene and cotton. J Eng Fibers Fabrics 2018;13(3):45‒58. 链接1

[13] Malshe P, Mazloumpour M, El-Shafei A, Hauser P. Functional military textile: plasma-induced graft polymerization of DADMAC for antimicrobial treatment on nylon-cotton blend fabric. Plasma Chem Plasma Process 2012;32(4):833‒43. 链接1

[14] Tan LY, Sin LT, Bee ST, Ratnam CT, Woo KK, Tee TT, et al. A review of antimicrobial fabric containing nanostructures metal-based compound. J Vinyl Addit Technol 2019;25(S1):E3‒E27. 链接1

[15] Gutarowska B, Michalski A. Microbial degradation of woven fabrics and protection against biodegradation. In: Jeon HY, editor. Woven fabrics. Rijeka: InTech; 2012. 链接1

[16] Haghi AK, Zaikov GE. Green nanofibers—production and limits. In: Wilkie CA, Geuskens G, Matos Lobo VM, editors. Handbook of research on functional materials: principles, capabilities, and limitations. Boca Raton: CRC Press; 2014. p. 11‒104. 链接1

[17] Hamlyn PF. Talking rot and mildew. Textiles 1990;19(2):46‒50.

[18] Ki HY, Kim JH, Kwon SC, Jeong SH. A study on multifunctional wool textiles treated with nano-sized silver. J Mater Sci 2007;42(19):8020‒4. 链接1

[19] Lee HJ, Jeong SH. Bacteriostasis and skin innoxiousness of nanosize silver colloids on textile fabrics. Text Res J 2005;75(7):551‒6. 链接1

[20] Dong H, Wang D, Sun G, Hinestroza JP. Assembly of metal nanoparticles on electrospun nylon 6 nanofibers by control of interfacial hydrogen-bonding interactions. Chem Mater 2008;20(21):6627‒32. 链接1

[21] Sashina ES, Dubkova OI, Novoselov NP, Goralsky JJ, Szynkowska MI, Lesniewska E, et al. Silver nanoparticles on fibers and films of Bombyx mori silk fibroin. Russ J Appl Chem 2009;82(6):974‒80. 链接1

[22] Ilić V, Šaponjić Z, Vodnik V, Potkonjak B, Jovančić P, Nedeljković J, et al. The influence of silver content on antimicrobial activity and color of cotton fabrics functionalized with Ag nanoparticles. Carbohydr Polym 2009;78(3):564‒9. 链接1

[23] Marcato PD, Nakasato G, Brocchi M, Melo PS, Huber SC, Ferreira IR, et al. Biogenic silver nanoparticles: antibacterial and cytotoxicity applied to textile fabrics. J Nano Res 2012;20:69‒76. 链接1

[24] Lee HJ, Yeo SY, Jeong SH. Antibacterial effect of nanosized silver colloidal solution on textile fabrics. J Mater Sci 2003;38(10):2199‒204.

[25] Gouda M. Nano-zirconium oxide and nano-silver oxide/cotton gauze fabrics for antimicrobial and wound healing acceleration. J Ind Text 2012;41(3):222‒40. 链接1

[26] Morais DS, Guedes RM, Lopes MA. Antimicrobial approaches for textiles: from research to market. Materials 2016;9(6):498. 链接1

[27] Gao Y, Cranston R. Recent advances in antimicrobial treatments of textiles. Text Res J 2008;78(1):60‒72. 链接1

[28] Son YA, Sun G. Durable antimicrobial nylon 66 fabrics: ionic interactions with quaternary ammonium salts. J Appl Polym Sci 2003;90(8):2194‒9. 链接1

[29] Zhao T, Sun G. Antimicrobial finishing of wool fabrics with quaternary aminopyridinium salts. J Appl Polym Sci 2007;103(1):482‒6. 链接1

[30] Shahidi S, Wiener J. Antibacterial agents in textile industry. In: Bobbarala V, editor. Antimicrobial agents. Rijeka: InTech; 2012. p. 387‒406. 链接1

[31] Worley SD, Williams DE, Crawford RA. Halamine water disinfectants. Crit Rev Environ Control 1988;18(2):133‒75. 链接1

[32] Vellingiri K, Ramachandran T, Senthilkumar M. Eco-friendly application of nano chitosan in antimicrobial coatings in the textile industry. Nanosci Nanotechnol Lett 2013;5(5):519‒29. 链接1

[33] Abdel-Mohsen AM, Abdel-Rahman RM, Hrdina R, Imramovsky´ A, Burgert L, Aly AS. Antibacterial cotton fabrics treated with core-shell nanoparticles. Int J Biol Macromol 2012;50(5):1245‒53. 链接1

[34] Lu YH, Chen YY, Lin H, Wang C, Yang ZD. Preparation of chitosan nanoparticles and their application to Antheraea pernyi silk. J Appl Polym Sci 2010;117(6):3362‒9.

[35] Naebe M, Li Q, Onur A, Denning R. Investigation of chitosan adsorption onto cotton fabric with atmospheric helium/oxygen plasma pre-treatment. Cellulose 2016;23(3):2129‒42. 链接1

[36] Rai M, Yadav A, Gade A. Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv 2009;27(1):76‒83. 链接1

[37] Vu NK, Zille A, Oliveira FR, Carneiro N, Souto AP. Effect of particle size on silver nanoparticle deposition onto dielectric barrier discharge (DBD) plasma functionalized polyamide fabric. Plasma Process Polym 2013;10(3):285‒96. 链接1

[38] Irfan M, Polonskyi O, Hinz A, Mollea C, Bosco F, Strunskus T, et al. Antibacterial, highly hydrophobic and semi transparent Ag/plasma polymer nanocomposite coating on cotton fabric obtained by plasma based codeposition. Cellulose 2019;26(16):8877‒94. 链接1

[39] Zille A, Almeida L, Amorim T, Carneiro N, Esteves MF, Silva CJ, et al. Application of nanotechnology in antimicrobial finishing of biomedical textiles. Mater Res Express 2014;1(3):032003. 链接1

[40] Gilbert P, Moore LE. Cationic antiseptics: diversity of action under a common epithet. J Appl Microbiol 2005;99(4):703‒15. 链接1

[41] Marini M, Bondi M, Iseppi R, Toselli M, Pilati F. Preparation and antibacterial activity of hybrid materials containing quaternary ammonium salts via solgel process. Eur Polym J 2007;43(8):3621‒8. 链接1

[42] Lim SH, Hudson SM. Review of chitosan and its derivatives as antimicrobial agents and their uses as textile chemicals. J Macromol Sci Part C Polym Rev 2003;43(2):223‒69. 链接1

[43] Gupta D, Khare SK, Laha A. Antimicrobial properties of natural dyes against Gram-negative bacteria. Color Technol 2004;120(4):167‒71. 链接1

[44] Han S, Yang Y. Antimicrobial activity of wool fabric treated with curcumin. Dyes Pigments 2005;64(2):157‒61. 链接1

[45] Bahtiyari MI, Yilmaz F. Investigation of antibacterial properties of wool fabrics dyed with pine cones. Ind Text 2018;69(5):369‒74. 链接1

[46] Joshi M, Ali SW, Purwar R, Rajendran S. Ecofriendly antimicrobial finishing of textiles using bioactive agents based on natural products. Indian J Fibre Text Res 2009;34(3):295‒304.

[47] Jang YJ, Lee JS. Antimicrobial treatment properties of Tencel Jacquard fabrics treated with ginkgo biloba extract and silicon softener. Fibers Polym 2010;11(3):422‒30. 链接1

[48] Ammayappan L, Jeyakodi Moses J. Study of antimicrobial activity of aloevera, chitosan, and curcumin on cotton, wool, and hairrabbit. Fibers Polym 2009;10(2):161‒6. 链接1

[49] Kim HW, Kim BR, Rhee YH. Imparting durable antimicrobial properties to cotton fabrics using alginate‒quaternary ammonium complex nanoparticles. Carbohydr Polym 2010;79(4):1057‒62. 链接1

[50] Chirila L, Constantinescu GC, Danila A, Popescu A, Constantinescu RR, Săndulache IM. Functionalization of textile materials with bioactive polymeric systems based on propolis and cinnamon essential oil. Ind Text 2020;71(2):186‒92. 链接1

[51] Petkova P, Francesko A, Fernandes MM, Mendoza E, Perelshtein I, Gedanken A, et al. Sonochemical coating of textiles with hybrid ZnO/chitosan antimicrobial nanoparticles. ACS Appl Mater Interfaces 2014;6(2):1164‒72. 链接1

[52] Pinho E, Magalhães L, Henriques M, Oliveira R. Antimicrobial activity assessment of textiles: standard methods comparison. Ann Microbiol 2011;61(3):493‒8. 链接1

[53] Virk RK, Ramaswamy GN, Bourham M, Bures BL. Plasma and antimicrobial treatment of nonwoven fabrics for surgical gowns. Text Res J 2004;74(12):1073‒9. 链接1

[54] ISO 20645:2004: Textile fabrics—determination of antibacterial activity—agar diffusion plate test. ISO standard. Geneva: International Organization for Standardization; 2004.

[55] AATCC 147:2004: Antibacterial activity assessment of textile materials: parallel streak method. US standard. New York: American Association of Textile Chemists and Colorists; 2004. 链接1

[56] JIS L 1902:2008: Testing for antibacterial activity and efficacy on textile products. Japanese Industrial Standard. Tokyo: Japanese Standard Association; 2008.

[57] Nikiforov AY, Deng X, Onyshchenko I, Vujosevic D, Vuksanovic V, Cvelbar U, et al. Atmospheric pressure plasma deposition of antimicrobial coatings on non-woven textiles. Eur Phys J Appl Phys 2016;75(2):24710. 链接1

[58] ISO 20743:2007: Textiles—determination of antibacterial activity of antibacterial finished products. ISO standard. Geneva: International Organization for Standardization; 2007.

[59] AATCC 100:2004: Antibacterial finishes on textile materials: Assessment of. US standard. New York: American Association of Textile Chemists and Colorists; 2004. 链接1

[60] Haji A, Haque ANMA, Naebe M. The effect of plasma treatment on dyeing of synthetic fibers. In: Rather LJ, Haji A, Shabbir M, editors. Innovative and emerging technologies for textile dyeing and finishing. Beverly: Scrivener Publishers; 2021. p. 213‒33. 链接1

[61] Naebe M, Haque ANMA, Haji A. The effect of plasma treatment on dyeing of natural fibers. In: Rather LJ, Haji A, Shabbir M, editors. Innovative and emerging technologies for textile dyeing and finishing. Beverly: Scrivener Publishers; 2021. p. 191‒212. 链接1

[62] Radetic M, Jovancic P, Puac N, Petrovic ZL. Environmental impact of plasma application to textiles. J Phys Conf Ser 2007;71:012017. 链接1

[63] Jelil RA. A review of low-temperature plasma treatment of textile materials. J Mater Sci 2015;50(18):5913‒43. 链接1

[64] Olde Riekerink MB, Terlingen JGA, Engbers GHM, Feijen J. Selective etching of semicrystalline polymers: CF4 gas plasma treatment of poly (ethylene). Langmuir 1999;15(14):4847‒56. 链接1

[65] Hwang YJ. Characterization of atmospheric pressure plasma interactions with textile/polymer substrates [dissertation]. Raleigh: North Carolina State University; 2003.

[66] Kan C, Yuen CW. Plasma technology in wool. Text Prog 2007;39(3):121‒87. 链接1

[67] Dave H, Ledwani L, Nema SK. Nonthermal plasma: a promising green technology to improve environmental performance of textile industries. In: Shahid-ul-Islam, Butola BS, editors. The impact and prospects of green chemistry for textile technology. Amsterdam: Elsevier; 2019. p. 199‒249. 链接1

[68] Naebe M, Denning R, Huson M, Cookson PG, Wang X. Ageing effect of plasmatreated wool. J Text Inst 2011;102(12):1086‒93. 链接1

[69] Naebe M, Cookson PG, Denning R, Wang X. Use of low-level plasma for enhancing the shrink resistance of wool fabric treated with a silicone polymer. J Text Inst 2011;102(11):948‒56. 链接1

[70] Naebe M, Cookson PG, Rippon J, Brady RP, Wang X, Brack N, et al. Effects of plasma treatment of wool on the uptake of sulfonated dyes with different hydrophobic properties. Text Res J 2010;80(4):312‒24. 链接1

[71] McCoustra MRS, Mather RR. Plasma modification of textiles: understanding the mechanisms involved. Text Prog 2018;50(4):185‒229. 链接1

[72] Ratnapandian S, Wang L, Fergusson SM, Naebe M. Effect of atmospheric plasma treatment on pad-dyeing of natural dyes on wool. J Fiber Bioeng Inf 2011;4(3):267‒76. 链接1

[73] Herbert T. Atmospheric-pressure cold plasma processing technology. In: Shishoo R, editor. Plasma technologies for textiles. Cambridge: Woodhead Publishing; 2007. p. 79‒128. 链接1

[74] Vaideki K. Plasma technology for antimicrobial textiles. In: Sun G, editor. Antimicrobial textiles. Cambridge: Woodhead Publishing; 2016. p. 73‒86. 链接1

[75] Kan CW, Yuen CWM. Textile modification with plasma treatment. Res J Text Apparel 2006;10(1):49‒64. 链接1

[76] Pransilp P, Pruettiphap M, Bhanthumnavin W, Paosawatyanyong B, Kiatkamjornwong S. Surface modification of cotton fabrics by gas plasmas for color strength and adhesion by inkjet ink printing. Appl Surf Sci 2016;364:208‒20. 链接1

[77] Pandiyaraj KN, Selvarajan V. Non-thermal plasma treatment for hydrophilicity improvement of grey cotton fabrics. J Mater Process Technol 2008;199(1‒3):130‒9.

[78] Peng S, Gao Z, Sun J, Yao L, Qiu Y. Influence of argon/oxygen atmospheric dielectric barrier discharge treatment on desizing and scouring of poly (vinyl alcohol) on cotton fabrics. Appl Surf Sci 2009;255(23):9458‒62. 链接1

[79] Shahid-ul-Islam, Shahid M, Mohammad F. Green chemistry approaches to develop antimicrobial textiles based on sustainable biopolymers—a review. Ind Eng Chem Res 2013;52(15):5245‒60. 链接1

[80] Zhou CE, Kan CW, Matinlinna J, Tsoi J. Regenerable antibacterial cotton fabric by plasma treatment with dimethylhydantoin: antibacterial activity against S. aureus. Coatings 2017;7(1):11. 链接1

[81] Zhou CE, Kan CW. Review of antibacterial finishing processes with plasma for cotton. Res J Text Apparel 2013;17(4):12‒24. 链接1

[82] Arik B, Demir A, Özdoğan E, Gülümser T. Effects of novel antibacterial chemicals on low temperature plasma functionalized cotton surface. Tekstil ve Konfeksiyon 2011;21(4):356‒63.

[83] ZemljicLFras, Persin Z, Stenius P. Improvement of chitosan adsorption onto cellulosic fabrics by plasma treatment. Biomacromolecules 2009;10(5):1181‒7. 链接1

[84] Haji A, Ashraf S, Nasiriboroumand M, Lievens C. Environmentally friendly surface treatment of wool fiber with plasma and chitosan for improved coloration with cochineal and safflower natural dyes. Fibers Polym 2020;21(4):743‒50. 链接1

[85] Haji A. Plasma activation and chitosan attachment on cotton and wool for improvement of dyeability and fastness properties. Pigm Resin Technol 2020;49(6):483‒9. 链接1

[86] Haji A. Improved natural dyeing of cotton by plasma treatment and chitosan coating. Optimization by response surface methodology. Cellul Chem Technol 2017;51(9‒10):975‒82.

[87] Haji A, Qavamnia SS, Bizhaem FK. Salt free neutral dyeing of cotton with anionic dyes using plasma and chitosan treatments. Ind Text 2016;‍67(2):109‒33.

[88] Haji A, Mehrizi MK, Sharifzadeh J. Dyeing of wool with aqueous extract of cotton pods improved by plasma treatment and chitosan: optimization using response surface methodology. Fibers Polym 2016;17(9):1480‒8. 链接1

[89] Haji A, Khajeh Mehrizi M, Hashemizad S. Plasma and chitosan treatments for improvement of natural dyeing and antibacterial properties of cotton and wool. Vlakna Text 2016;23(3):86‒90.

[90] Sophonvachiraporn P, Rujiravanit R, Sreethawong T, Tokura S, Chavadej S. Surface characterization and antimicrobial activity of chitosan-deposited DBD plasma-modified woven PET surface. Plasma Chem Plasma Process 2011;31(1):233‒49. 链接1

[91] Chang YB, Tu PC, Wu MW, Hsueh TH, Hsu SH. A study on chitosan modification of polyester fabrics by atmospheric pressure plasma and its antibacterial effects. Fibers Polym 2008;9(3):307‒11. 链接1

[92] Tseng HJ, Hsu SH, Wu MW, Hsueh TH, Tu PC. Nylon textiles grafted with chitosan by open air plasma and their antimicrobial effect. Fibers Polym 2009;10(1):53‒9. 链接1

[93] Goy RC, de Britto D, Assis OBG. A review of the antimicrobial activity of chitosan. Polímeros 2009;19(3):241‒7. 链接1

[94] Goy RC, Morais STB, Assis OBG. Evaluation of the antimicrobial activity of chitosan and its quaternized derivative on E. coli and S. aureus growth. Rev Bras Farmacogn 2016;26(1):122‒7. 链接1

[95] Yim JH, Fleischman MS, Rodriguez-Santiago V, Piehler LT, Williams AA, Leadore JL, et al. Development of antimicrobial coatings by atmospheric pressure plasma using a guanidine-based precursor. ACS Appl Mater Interfaces 2013;5(22):11836‒43. 链接1

[96] Song X, Cvelbar U, Strazar P, Vossebein L, ChemicalZille A., thermomechanical and antimicrobial properties of DBD plasma treated disinfectant-impregnated wipes during storage. Polymers 2019;11(11):1769. 链接1

[97] Song X, Cvelbar U, Strazar P, Vossebein L, Zille A. Antimicrobial efficiency and surface interactions of quaternary ammonium compound absorbed on dielectric barrier discharge (DBD) plasma treated fiber-based wiping materials. ACS Appl Mater Interfaces 2020;12(1):298‒311. 链接1

[98] Labay C, Canal JM, Modic M, Cvelbar U, Quiles M, Armengol M, et al. Antibiotic-loaded polypropylene surgical meshes with suitable biological behaviour by plasma functionalization and polymerization. Biomaterials 2015;71:132‒44. 链接1

[99] Ivanova TV, Krumpolec R, Homola T, Musin E, Baier G, Landfester K, et al. Ambient air plasma pre-treatment of non-woven fabrics for deposition of antibacterial poly(L-lactide) nanoparticles. Plasma Process Polym 2017;14(10):1600231. 链接1

[100] Ribeiro AI, Senturk D, Silva KK, Modic M, Cvelbar U, Dinescu G, et al. Antimicrobial efficacy of low concentration PVP‍‒‍silver nanoparticles deposited on DBD plasma-treated polyamide 6,6 fabric. Coatings 2019;9(9):581. 链接1

[101] Zille A, Fernandes MM, Francesko A, Tzanov T, Fernandes M, Oliveira FR, et al. Size and aging effects on antimicrobial efficiency of silver nanoparticles coated on polyamide fabrics activated by atmospheric DBD plasma. ACS Appl Mater Interfaces 2015;7(25):13731‒44. 链接1

[102] Ilić V, Saponjić Z, Vodnik V, Lazović S, Dimitrijević S, Jovancić P, et al. Bactericidal efficiency of silver nanoparticles deposited onto radio frequency plasma pretreated polyester fabrics. Ind Eng Chem Res 2010;49(16):7287‒93. 链接1

[103] Nourbakhsh S. Antimicrobial performance of plasma corona modified cotton treated with silver nitrate. Russ J Appl Chem 2018;91(8):1338‒44. 链接1

[104] Nourbakhsh S, Sepehrnia H, Akbari E. Novel corona discharge treatment of cotton fabric with Cu and ZnO nanoparticles. J Text Inst 2020;111(9):1269‒76. 链接1

[105] Peng L, Guo R, Lan J, Jiang S, Wang X, Li C, et al. Synthesis of silver nanoparticles on bamboo pulp fabric after plasma pretreatment. J Mater Sci Mater Electron 2016;27(6):5925‒33. 链接1

[106] Gorjanc M, Bukošek V, Gorenšek M, Mozetič M. CF4 plasma and silver functionalized cotton. Text Res J 2010;80(20):2204‒13. 链接1

[107] Anjum S, Gupta A, Sharma D, Kumari S, Sahariah P, Bora J, et al. Antimicrobial nature and healing behavior of plasma functionalized polyester sutures. J Bioact Compat Polym Biomed Appl 2017;32(3):263‒79. 链接1

[108] Radić N, Obradović BM, Kostić M, Dojčinović B, Hudcová M, Kuraica MM, et al. Deposition of gold nanoparticles on polypropylene nonwoven pretreated by dielectric barrier discharge and diffuse coplanar surface barrier discharge. Plasma Chem Plasma Process 2013;33(1):201‒18. 链接1

[109] Kramar A, Prysiazhnyi V, Dojčinović B, Mihajlovski K, Obradović BM, Kuraica MM, et al. Antimicrobial viscose fabric prepared by treatment in DBD and subsequent deposition of silver and copper ions—investigation of plasma aging effect. Surf Coat Technol 2013;234:92‒9. 链接1

[110] Kostić M, Radić N, Obradović BM, Dimitrijević S, Kuraica MM, Skundrić P. Silver-loaded cotton/polyester fabric modified by dielectric barrier discharge treatment. Plasma Process Polym 2009;6(1):58‒67. 链接1

[111] Deng X, Yu Nikiforov A, Coenye T, Cools P, Aziz G, Morent R, et al. Antimicrobial nano-silver non-woven polyethylene terephthalate fabric via an atmospheric pressure plasma deposition process. Sci Rep 2015;5(1):10138. 链接1

[112] Deng X, Nikiforov A, Vujosevic D, Vuksanovic V, Mugoša B, Cvelbar U, et al. Antibacterial activity of nano-silver non-woven fabric prepared by atmospheric pressure plasma deposition. Mater Lett 2015;149:95‒9. 链接1

[113] Ocampo IND, Malapit GM, Baculi RQ. Ar/O2 atmospheric pressure plasma jet treatment of pure cotton fabric for antibacterial application. Plasma Fusion Res 2018;13:3406116. 链接1

[114] Nanjappan K, Aarumugam V, Kesavan V. Plasma process for coated fabric materials with Zinc to prepare antibacterial modal fabric. Mater Technol 2018;33(10):635‒41. 链接1

[115] Jazbec K, Šala M, Mozetič M, Vesel A, Gorjanc M. Functionalization of cellulose fibres with oxygen plasma and ZnO nanoparticles for achieving UV protective properties. J Nanomater 2015;2015:1‒9. 链接1

[116] Zhou CE, Kan C, Yuen CM, Lo KC, Ho C, Lau KR. Regenerable antimicrobial finishing of cotton with nitrogen plasma treatment. BioResources 2016;11(1):1554‒70. 链接1

[117] Zhou CE, Kan CW, Yuen CW, Matinlinna JP, Tsoi JH, Zhang Q. Plasma treatment applied in the pad‒dry‒cure process for making rechargeable antimicrobial cotton fabric that inhibits S. Aureus. Text Res J 2016;86(20):2202‒15. 链接1

[118] Zhou CE, Kan CW. Optimizing rechargeable antimicrobial performance of cotton fabric coated with 5,5-dimethylhydantoin (DMH). Cellulose 2015;22(1):879‒86. 链接1

[119] Kan CW. Using plasma treatment for enhancing the coating for rechargeable antimicrobial finishing of cotton fabric. Int J Chem Eng Appl 2015;6(6):432‒5. 链接1

[120] Kongarasi K, Rajendran R, Radhai R, Karthik Sundaram S, Rajalakshmi V, Manikandan A, et al. Antimicrobial property of plasma treated bamboo fabric imparted with combinatorial herbal extract. Int J Pure Appl Biosci 2016;4(6):76‒87. 链接1

[121] Vajpayee M, Singh M, Ledwani L, Prakash R, Nema SK. Investigation of antimicrobial activity of DBD air plasma-treated banana fabric coated with natural leaf extracts. ACS Omega 2020;5(30):19034‒49. 链接1

[122] Shahidi S, Aslan N, Ghoranneviss M, Korachi M. Effect of thymol on the antibacterial efficiency of plasma-treated cotton fabric. Cellulose 2014;21(3):1933‒43. 链接1

[123] Nithya E, Radhai R, Rajendran R, Jayakumar S, Vaideki K. Enhancement of the antimicrobial property of cotton fabric using plasma and enzyme pretreatments. Carbohydr Polym 2012;88(3):986‒91. 链接1

[124] Nithya E, Jayakumar S, Vaideki K, Rajendran R. The influence of DC air plasma and cellulase enzyme on the antimicrobial activity of azadirachtin (neem leaf extract) treated cotton fabric. In: Mendez-Vilas A, editor. Science and technology against microbial pathogens. Singapore: World Scientific; 2011.p. 196‒201. 链接1

[125] Vaideki K, Jayakumar S, Rajendran R, Thilagavathi G. Investigation on the effect of RF air plasma and neem leaf extract treatment on the surface modification and antimicrobial activity of cotton fabric. Appl Surf Sci 2008;254(8):2472‒8. 链接1

[126] Vaideki K, Jayakumar S, Rajendran R. Investigation on the enhancement of antimicrobial activity of neem leaf extract treated cotton fabric using air and oxygen DC plasma. Plasma Chem Plasma Process 2009;29(6):515‒34. 链接1

[127] Vaideki K, Jayakumar S, Thilagavathi G, Rajendran R. A study on the antimicrobial efficacy of RF oxygen plasma and neem extract treated cotton fabrics. Appl Surf Sci 2007;253(17):7323‒9. 链接1

[128] Anitha S, Vaideki K, Jayakumar S, Rajendran R. Enhancement of antimicrobial efficacy of neem oil vapour treated cotton fabric by plasma pretreatment. Mater Technol 2015;30(6):368‒77. 链接1

[129] Chen C, Chang WY. Antimicrobial activity of cotton fabric pretreated by microwave plasma and dyed with onion skin and onion pulp extractions. Indian J Fibre Text Res 2007;32(1):122‒5.

[130] Haji A, Khajeh Mehrizi M, Akbarpour R. Optimization of β-cyclodextrin grafting on wool fibers improved by plasma treatment and assessment of antibacterial activity of berberine finished fabric. J Incl Phenom Macrocycl Chem 2015;81(1‒2):121‒33.

[131] Haji A, Shoushtari AM. Natural antibacterial finishing of wool fiber using plasma technology. Ind Text 2011;62(5):244‒7.

[132] Shahidi S, Ghoranneviss M. Plasma sputtering for fabrication of antibacterial and ultraviolet protective fabric. Cloth Text Res J 2016;34(1):37‒47. 链接1

[133] Yuan X, Yin W, Ke H, Wei Q, Huang Z, Chen D. Properties and application of multi-functional and structurally colored textile prepared by magnetron sputtering. J Ind Text 2022;51(8):1528083719900671. 链接1

[134] Liu S, Li J, Zhang S, Zhang X, Ma J, Wang Na, et al. Template-assisted magnetron sputtering of cotton nonwovens for wound healing application. ACS Appl Bio Mater 2020;3(2):848‒58. 链接1

[135] Naeem M, Felipe MBMC, de Medeiros SRB, Costa THC, Libório MS, Alves Jr C, et al. Novel antibacterial silver coating on PET fabric assisted with hollowcathode glow discharge. Polym Adv Technol 2020;31(11):2896‒905. 链接1

[136] Rani KV, Sarma B, Sarma A. Plasma sputtering process of copper on polyester/silk blended fabrics for preparation of multifunctional properties. Vacuum 2017;146:206‒15. 链接1

[137] Khamseh S, Tekieh Fatemi SM, Koozegar kaleji B, Sadeghi-Kiakhani M. Investigations on sputter-coated cotton fabric with regard to their microstructure, antibacterial, hydrophobic properties and thermal stability. J Text Inst 2017;108(12):2184‒90. 链接1

[138] Irfan M, Perero S, Miola M, Maina G, Ferri A, Ferraris M, et al. Antimicrobial functionalization of cotton fabric with silver nanoclusters/silica composite coating via RF co-sputtering technique. Cellulose 2017;24(5):2331‒45. 链接1

[139] Dong P, Nie X, Jin Z, Huang Z, Wang X, Zhang X. Dual dielectric barrier discharge plasma treatments for synthesis of Ag‍‒‍TiO2 functionalized polypropylene fabrics. Ind Eng Chem Res 2019;58(19):7734‒41. 链接1

[140] Fan Z, Di L, Zhang X, Wang H. A surface dielectric barrier discharge plasma for preparing cotton-fabric-supported silver nanoparticles. Nanomaterials (Basel) 2019;9(7):961‒72. 链接1

[141] Li Z, Meng J, Wang W, Wang Z, Li M, Chen T, et al. The room temperature electron reduction for the preparation of silver nanoparticles on cotton with high antimicrobial activity. Carbohydr Polym 2017;161:270‒6. 链接1

[142] Kratochvíl J, Kuzminova A, Kylián O. State-of-the-art, and perspectives of, silver/plasma polymer antibacterial nanocomposites. Antibiotics 2018;7(3):78. 链接1

[143] Nikiforov A, Deng X, Xiong Q, Cvelbar U, DeGeyter N, Morent R, et al. Nonthermal plasma technology for the development of antimicrobial surfaces: a review. J Phys D Appl Phys 2016;49(20):204002. 链接1

[144] Tan XQ, Liu JY, Niu JR, Liu JY, Tian JY. Recent progress in magnetron sputtering technology used on fabrics. Materials 2018;11(10):1953. 链接1

[145] Surdu L, Visileanu E, Ardeleanu A, Mitran C, Rǎdulescu IR, Stancu C, et al. Research regarding the cover factor of magnetron sputtering plasma coated fabrics. Ind Text 2019;70(2):154‒9. 链接1

[146] Peng L, Guo R, Lan J, Jiang S, Zhang Z, Xu J. Preparation and characterization of copper-coated polyester fabric pretreated with laser by magnetron sputtering. J Ind Text 2018;48(2):482‒93. 链接1

[147] Aboutorabi SN, Nasiriboroumand M, Mohammadi P, Sheibani H, Barani H. Biosynthesis of silver nanoparticles using safflower flower: structural characterization, and its antibacterial activity on applied wool fabric. J Inorg Organomet Polym Mater 2018;28(6):2525‒32. 链接1

[148] Boroumand MN, Montazer M, Simon F, Liesiene J, Šaponjic Z, Dutschk V. Novel method for synthesis of silver nanoparticles and their application on wool. Appl Surf Sci 2015;346:477‒83. 链接1

[149] Di L, Zhang J, Zhang X. A review on the recent progress, challenges, and perspectives of atmospheric-pressure cold plasma for preparation of supported metal catalysts. Plasma Process Polym 2018;15(5):1700234. 链接1

[150] Dong P, Yang F, Cheng X, Huang Z, Nie X, Xiao Y, et al. Plasmon enhanced photocatalytic and antimicrobial activities of Ag‒TiO2 nanocomposites under visible light irradiation prepared by DBD cold plasma treatment. Mater Sci Eng C Mater Biol Appl 2019;96:197‒204. 链接1

[151] Buyle G. Nanoscale finishing of textiles via plasma treatment. Mater Technol 2009;24(1):46‒51. 链接1

[152] Zille A, Oliveira FR, Souto AP. Plasma treatment in textile industry. Plasma Process Polym 2015;12(2):98‒131. 链接1

[153] Parthasarathi V, Thilagavathi G. Development of plasma enhanced antiviral surgical gown for healthcare workers. Fashion Text 2015;2(1):4. 链接1

相关研究