期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2021年 第7卷 第5期 doi: 10.1016/j.eng.2021.02.004

基于液-液界面的主-客体分子识别

a Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
b Department of Polymer Science and Engineering, University of Massachusetts, Amherst, MA 01003, USA
c Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA

收稿日期: 2020-08-01 修回日期: 2020-11-19 录用日期: 2021-02-08 发布日期: 2021-03-24

下一篇 上一篇

摘要

由于动态和可逆的性质,主-客体识别作为一种非共价键相互作用,赋予了液-液界面独特的性质,包括刺激响应性和自调节性等。近年来,越来越多的研究致力于通过在液-液界面上集成功能性单元(如胶体粒子、聚合物)来构筑二维薄膜和微胶囊等超分子界面体系,这为物质封装、递送、双相反应器等领域提供了重要的发展机遇。在本文中,我们总结了近年来基于主-客体相互作用构筑超分子界面体系的研究进展,并对其制备方法、功能和应用进行了概述。

图片

图1

图2

图3

图4

图5

图6

图7

图8

图9

图10

图11

图12

参考文献

[ 1 ] Barrow SJ, Kasera S, Rowland MJ, del Barrio J, Scherman OA. Cucurbituril-based molecular recognition. Chem Rev 2015;115(22):12320–406. 链接1

[ 2 ] Delbianco M, Bharate P, Varela-Aramburu S, Seeberger PH. Carbohydrates in supramolecular chemistry. Chem Rev 2016;116(4):1693–752. 链接1

[ 3 ] Huang Z, Qin B, Chen L, Xu JF, Faul CFJ, Zhang X. Supramolecular polymerization from controllable fabrication to living polymerization. Macromol Rapid Commun 2017;38(17):1700312. 链接1

[ 4 ] Lehn JM. Supramolecular chemistry. Science 1993;260(5115):1762–3. 链接1

[ 5 ] Yu G, Jie K, Huang F. Supramolecular amphiphiles based on host–guest molecular recognition motifs. Chem Rev 2015;115(15):7240–303. 链接1

[ 6 ] Evans NH, Beer PD. Advances in anion supramolecular chemistry: from recognition to chemical applications. Angew Chem Int Ed Engl 2014;53 (44):11716–54. 链接1

[ 7 ] Zheng B, Wang F, Dong S, Huang F. Supramolecular polymers constructed by crown ether-based molecular recognition. Chem Soc Rev 2012;41(5):1621–36. 链接1

[ 8 ] Yang H, Yuan B, Zhang X, Scherman OA. Supramolecular chemistry at interfaces: host–guest interactions for fabricating multifunctional biointerfaces. Acc Chem Res 2014;47(7):2106–15. 链接1

[ 9 ] Liu J, Lan Y, Yu Z, Tan CSY, Parker RM, Abell C, et al. Cucurbit[n]uril-based microcapsules self-assembled within microfluidic droplets: a versatile approach for supramolecular architectures and materials. Acc Chem Res 2017;50(2):208–17. 链接1

[10] Ren X, Yu Z, Wu Y, Liu J, Abell C, Scherman OA. Cucurbit[7]uril-based highperformance catalytic microreactors. Nanoscale 2018;10(31):14835–9. 链接1

[11] Le NDB, Yesilbag Tonga G, Mout R, Kim ST, Wille ME, Rana S, et al. Cancer cell discrimination using host–guest ‘‘doubled” arrays. J Am Chem Soc 2017;139 (23):8008–12. 链接1

[12] Gao T, Li L, Wang B, Zhi J, Xiang Y, Li G. Dynamic electrochemical control of cell capture-and-release based on redox-controlled host–guest interactions. Anal Chem 2016;88(20):9996–10001. 链接1

[13] Qin B, Zhang S, Song Q, Huang Z, Xu JF, Zhang X. Supramolecular interfacial polymerization: a controllable method of fabricating supramolecular polymeric materials. Angew Chem Int Ed Engl 2017;56(26):7639–43. 链接1

[14] Qin B, Zhang S, Huang Z, Xu JF, Zhang X. Supramolecular interfacial polymerization of miscible monomers: fabricating supramolecular polymers with tailor-made structures. Macromolecules 2018;51(5):1620–5. 链接1

[15] Zhang S, Qin B, Huang Z, Xu JF, Zhang X. Supramolecular emulsion interfacial polymerization. ACS Macro Lett 2019;8(2):177–82. 链接1

[16] Varshney R, Alam M, Agashe C, Joseph R, Patra D. Pillar[5]arene microcapsules turn on fluid flow in the presence of paraquat. Chem Commun 2020;56 (65):9284–7. 链接1

[17] Binks BP. Particles as surfactants-similarities and differences. Curr Opin Colloid Interface Sci 2002;7(1–2):21–41. 链接1

[18] Bago Rodriguez AM, Binks BP. Capsules from Pickering emulsion templates. Curr Opin Colloid Interface Sci 2019;44:107–29. 链接1

[19] Wu G, Liu X, Zhou P, Xu Z, Hegazy M, Huang X, et al. The construction of thiolfunctionalized DNAsomes with small molecules response and protein release. Mater Sci Eng C Mater Biol Appl 2019;99:1153–63. 链接1

[20] Deng R, Wang Y, Yang L, Bain CD. In situ fabrication of polymeric microcapsules by ink-jet printing of emulsions. ACS Appl Mater Interfaces 2019;11 (43):40652–61. 链接1

[21] Toor A, Lamb S, Helms BA, Russell TP. Reconfigurable microfluidic droplets stabilized by nanoparticle surfactants. ACS Nano 2018;12(3):2365–72. 链接1

[22] Yang Z, Wei J, Sobolev YI, Grzybowski BA. Systems of mechanized and reactive droplets powered by multi-responsive surfactants. Nature 2018;553 (7688):313–8. 链接1

[23] Qian B, Shi S, Wang H, Russell TP. Reconfigurable liquids stabilized by DNA surfactants. ACS Appl Mater Interfaces 2020;12(11):13551–7. 链接1

[24] Cui M, Emrick T, Russell TP. Stabilizing liquid drops in nonequilibrium shapes by the interfacial jamming of nanoparticles. Science 2013;342(6157):460–3. 链接1

[25] Chen D, Sun Z, Russell TP, Jin L. Coassembly kinetics of graphene oxide and block copolymers at the water/oil interface. Langmuir 2017;33(36):8961–9. 链接1

[26] Shi S, Russell TP. Nanoparticle assembly at liquid–liquid interfaces: from the nanoscale to mesoscale. Adv Mater 2018;30(44):e1800714. 链接1

[27] Forth J, Kim PY, Xie G, Liu X, Helms BA, Russell TP. Building reconfigurable devices using complex liquid–fluid interfaces. Adv Mater 2019;31(18): e1806370. 链接1

[28] Liu X, Kent N, Ceballos A, Streubel R, Jiang Y, Chai Y, et al. Reconfigurable ferromagnetic liquid droplets. Science 2019;365(6450):264–7. 链接1

[29] Cain JD, Azizi A, Maleski K, Anasori B, Glazer EC, Kim PY, et al. Sculpting liquids with two-dimensional materials: the assembly of Ti3C2Tx MXene sheets at liquid–liquid interfaces. ACS Nano 2019;13(11):12385–92. 链接1

[30] Feng W, Chai Y, Forth J, Ashby PD, Russell TP, Helms BA. Harnessing liquid-inliquid printing and micropatterned substrates to fabricate 3-dimensional allliquid fluidic devices. Nat Commun 2019;10(1):1095. 链接1

[31] Wang J, Wang D, Sobal NS, Giersig M, Jiang M, Möhwald H. Stepwise directing of nanocrystals to self-assemble at water/oil interfaces. Angew Chem Int Ed Engl 2006;45(47):7963–6. 链接1

[32] Zhang J, Coulston RJ, Jones ST, Geng J, Scherman OA, Abell C. One-step fabrication of supramolecular microcapsules from microfluidic droplets. Science 2012;335(6069):690–4. 链接1

[33] Sun H, Li L, Russell TP, Shi S. Photoresponsive structured liquids enabled by molecular recognition at liquid–liquid interfaces. J Am Chem Soc 2020;142 (19):8591–5. 链接1

[34] Ramsden W. Separation of solids in the surface-layers of solutions and ‘suspensions’ (observations on surface-membranes, bubbles, emulsions, and mechanical coagulation)—preliminary account. Proc R Soc London 1904;72:477–86. 链接1

[35] Pickering SU. CXCVI.—emulsions. J Chem Soc Trans 1907;91:2001–21. 链接1

[36] Gonzalez Ortiz D, Pochat-Bohatier C, Cambedouzou J, Bechelany M, Miele P. Current trends in Pickering emulsions: particle morphology and applications. Engineering 2020;6(4):468–82. 链接1

[37] Pieranski P. Two-dimensional interfacial colloidal crystals. Phys Rev Lett 1980;45(7):569–72. 链接1

[38] Meethal SK, Sasmal R, Pahwa M, Soumya C, Saha ND, Agasti SS. Cucurbit[7] uril-directed assembly of colloidal membrane and stimuli-responsive microcapsules at the liquid–liquid interface. Langmuir 2018;34(2):693–9. 链接1

[39] Arumugam P, Patra D, Samanta B, Agasti SS, Subramani C, Rotello VM. Selfassembly and cross-linking of FePt nanoparticles at planar and colloidal liquid–liquid interfaces. J Am Chem Soc 2008;130(31):10046–7. 链接1

[40] Patra D, Pagliuca C, Subramani C, Samanta B, Agasti SS, Zainalabdeen N, et al. Molecular recognition at the liquid–liquid interface of colloidal microcapsules. Chem Commun (Camb) 2009;28:4248–50. 链接1

[41] Lin Y, Skaff H, Böker A, Dinsmore AD, Emrick T, Russell TP. Ultrathin crosslinked nanoparticle membranes. J Am Chem Soc 2003;125(42):12690–1. 链接1

[42] Skaff H, Lin Y, Tangirala R, Breitenkamp K, Böker A, Russell TP, et al. Crosslinked capsules of quantum dots by interfacial assembly and ligand crosslinking. Adv Mater 2005;17(17):2082–6. 链接1

[43] Yang N, Wang ZS, Zhu ZY, Chen SC, Wu G. Polymeric microcapsules with sustainable core and hierarchical shell toward superhydrophobicity and sunlight-induced self-healing performance. Ind Eng Chem Res 2018;57 (43):14517–26. 链接1

[44] Bielas R, Surdeko D, Kaczmarek K, Józefczak A. The potential of magnetic heating for fabricating Pickering-emulsion-based capsules. Colloids Surf B Biointerfaces 2020;192:111070. 链接1

[45] Sun Q, Chen JF, Routh AF. Coated colloidosomes as novel drug delivery carriers. Expert Opin Drug Deliv 2019;16(9):903–6. 链接1

[46] Patra D, Sanyal A, Rotello VM. Colloidal microcapsules: self-assembly of nanoparticles at the liquid–liquid interface. Chem Asian J 2010;5 (12):2442–53. 链接1

[47] Patra D, Ozdemir F, Miranda OR, Samanta B, Sanyal A, Rotello VM. Formation and size tuning of colloidal microcapsules via host–guest molecular recognition at the liquid–liquid interface. Langmuir 2009;25 (24):13852–4. 链接1

[48] Jeong Y, Chen YC, Turksoy MK, Rana S, Tonga GY, Creran B, et al. Tunable elastic modulus of nanoparticle monolayer films by host–guest chemistry. Adv Mater 2014;26(29):5056–61. 链接1

[49] Bollhorst T, Rezwan K, Maas M. Colloidal capsules: nano- and microcapsules with colloidal particle shells. Chem Soc Rev 2017;46(8):2091–126. 链接1

[50] Kaufman G, Montejo KA, Michaut A, Majewski PW, Osuji CO. Photoresponsive and magnetoresponsive graphene oxide microcapsules fabricated by droplet microfluidics. ACS Appl Mater Interfaces 2017;9(50):44192–8. 链接1

[51] Zhang H, Tumarkin E, Peerani R, Nie Z, Sullan RMA, Walker GC, et al. Microfluidic production of biopolymer microcapsules with controlled morphology. J Am Chem Soc 2006;128(37):12205–10. 链接1

[52] Kim BI, Jeong SW, Lee KG, Park TJ, Park JY, Song JJ, et al. Synthesis of bioactive microcapsules using a microfluidic device. Sensors 2012;12(8):10136–47. 链接1

[53] Stephenson G, Parker RM, Lan Y, Yu Z, Scherman OA, Abell C. Supramolecular colloidosomes: fabrication, characterisation and triggered release of cargo. Chem Commun 2014;50(53):7048–51. 链接1

[54] Yu Z, Lan Y, Parker RM, Zhang W, Deng X, Scherman OA, et al. Dual-responsive supramolecular colloidal microcapsules from cucurbit[8]uril molecular recognition in microfluidic droplets. Polym Chem 2016;7(38):5996–6002. 链接1

[55] Tong W, Song X, Gao C. Layer-by-layer assembly of microcapsules and their biomedical applications. Chem Soc Rev 2012;41(18):6103–24. 链接1

[56] Borges J, Mano JF. Molecular interactions driving the layer-by-layer assembly of multilayers. Chem Rev 2014;114(18):8883–942. 链接1

[57] Such GK, Johnston APR, Caruso F. Engineered hydrogen-bonded polymer multilayers: from assembly to biomedical applications. Chem Soc Rev 2011;40 (1):19–29. 链接1

[58] Wang Z, Feng Z, Gao C. Stepwise assembly of the same polyelectrolytes using host–guest interaction to obtain microcapsules with multiresponsive properties. Chem Mater 2008;20(13):4194–9. 链接1

[59] Johnston APR, Read ES, Caruso F. DNA multilayer films on planar and colloidal supports: sequential assembly of like-charged polyelectrolytes. Nano Lett 2005;5(5):953–6. 链接1

[60] Zhang L, Zhu L, Larson SR, Zhao Y, Wang X. Layer-by-layer assembly of nanorods on a microsphere via electrostatic interactions. Soft Matter 2018;14 (22):4541–50. 链接1

[61] Zheng Y, Yu Z, Parker RM, Wu Y, Abell C, Scherman OA. Interfacial assembly of dendritic microcapsules with host–guest chemistry. Nat Commun 2014;5 (1):5772. 链接1

[62] Parker RM, Zhang J, Zheng Y, Coulston RJ, Smith CA, Salmon AR, et al. Electrostatically directed self-assembly of ultrathin supramolecular polymer microcapsules. Adv Funct Mater 2015;25(26):4091–100. 链接1

[63] Yu Z, Zhang J, Coulston RJ, Parker RM, Biedermann F, Liu X, et al. Supramolecular hydrogel microcapsules via cucurbit[8]uril host–guest interactions with triggered and UV-controlled molecular permeability. Chem Sci 2015;6(8):4929–33. 链接1

[64] Yu Z, Zheng Y, Parker RM, Lan Y, Wu Y, Coulston RJ, et al. Microfluidic dropletfacilitated hierarchical assembly for dual cargo loading and synergistic delivery. ACS Appl Mater Interfaces 2016;8(13):8811–20. 链接1

[65] Groombridge AS, Palma A, Parker RM, Abell C, Scherman OA. Aqueous interfacial gels assembled from small molecule supramolecular polymers. Chem Sci 2017;8(2):1350–5. 链接1

[66] Salmon AR, Parker RM, Groombridge AS, Maestro A, Coulston RJ, Hegemann J, et al. Microcapsule buckling triggered by compression-induced interfacial phase change. Langmuir 2016;32(42):10987–94. 链接1

[67] Wang LS, Gopalakrishnan S, Rotello VM. Tailored functional surfaces using nanoparticle and protein ‘‘nanobrick” coatings. Langmuir 2019;35(34):10993–1006. 链接1

[68] Xu H, Hong R, Lu T, Uzun O, Rotello VM. Recognition-directed orthogonal selfassembly of polymers and nanoparticles on patterned surfaces. J Am Chem Soc 2006;128(10):3162–3. 链接1

[69] Zhang J, Liu J, Yu Z, Chen S, Scherman OA, Abell C. Patterned arrays of supramolecular microcapsules. Adv Funct Mater 2018;28(20):1800550. 链接1

[70] Chai Y, Lukito A, Jiang Y, Ashby PD, Russell TP. Fine-tuning nanoparticle packing at water–oil interfaces using ionic strength. Nano Lett 2017;17 (10):6453–7. 链接1

[71] Cui M, Miesch C, Kosif I, Nie H, Kim PY, Kim H, et al. Transition in dynamics as nanoparticles jam at the liquid/liquid interface. Nano Lett 2017;17 (11):6855–62. 链接1

[72] Huang C, Cui M, Sun Z, Liu F, Helms BA, Russell TP. Self-regulated nanoparticle assembly at liquid/liquid interfaces: a route to adaptive structuring of liquids. Langmuir 2017;33(32):7994–8001. 链接1

[73] Toor A, Helms BA, Russell TP. Effect of nanoparticle surfactants on the breakup of free-falling water jets during continuous processing of reconfigurable structured liquid droplets. Nano Lett 2017;17(5):3119–25. 链接1

[74] Huang C, Chai Y, Jiang Y, Forth J, Ashby PD, Arras MML, et al. The interfacial assembly of polyoxometalate nanoparticle surfactants. Nano Lett 2018;18 (4):2525–9. 链接1

[75] Huang C, Sun Z, Cui M, Liu F, Helms BA, Russell TP. Structured liquids with pHtriggered reconfigurability. Adv Mater 2016;28(31):6612–8. 链接1

[76] Liu X, Shi S, Li Y, Forth J, Wang D, Russell TP. Liquid tubule formation and stabilization using cellulose nanocrystal surfactants. Angew Chem Int Ed Engl 2017;56(41):12594–8. 链接1

[77] Jiang Y, Löbling TI, Huang C, Sun Z, Müller AHE, Russell TP. Interfacial assembly and jamming behavior of polymeric Janus particles at liquid interfaces. ACS Appl Mater Interfaces 2017;9(38):33327–32. 链接1

[78] Jiang Y, Chakroun R, Gu P, Gröschel AH, Russell TP. Soft polymer Janus nanoparticles at liquid–liquid interfaces. Angew Chem Int Ed Engl 2020;59 (31):12751–5. 链接1

[79] Huang C, Forth J, Wang W, Hong K, Smith GS, Helms BA, et al. Bicontinuous structured liquids with sub-micrometre domains using nanoparticle surfactants. Nat Nanotechnol 2017;12(11):1060–3. 链接1

[80] Xu R, Liu T, Sun H, Wang B, Shi S, Russell TP. Interfacial assembly and jamming of polyelectrolyte surfactants: a simple route to print liquids in low-viscosity solution. ACS Appl Mater Interfaces 2020;12(15):18116–22. 链接1

[81] Shi S, Qian B, Wu X, Sun H, Wang H, Zhang HB, et al. Self-assembly of MXenesurfactants at liquid–liquid interfaces: from structured liquids to 3D aerogels. Angew Chem Int Ed Engl 2019;58(50):18171–6. 链接1

相关研究