期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2021年 第7卷 第5期 doi: 10.1016/j.eng.2021.02.005

基于微流控工程的高强力学性能蛋白纤维

a Institute of Organic Chemistry, University of Ulm, Ulm 89081, Germany
b Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
c Department of Chemistry, Tsinghua University, Beijing 100084, China
d State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China

收稿日期: 2020-09-18 修回日期: 2020-12-12 录用日期: 2021-02-08 发布日期: 2021-04-02

下一篇 上一篇

摘要

21世纪以来,研究者对轻质和高强力学性能的天然蜘蛛丝、蚕丝纤维投入了大量研究。受此研究启发,诸多人工纺丝技术(湿法纺丝、干法纺丝、电纺等)被先后开发,并用以制造坚固的蛋白纤维。然而,传统纺丝手段对所制纤维的控制能力较差。针对此问题,微流控技术已与这些技术完成良好的结合,实现了以精心设计的方式制造生物纤维,且具有操作简单和成本效益的特点。通过控制微流体通道的类型、大小、流速和剪切力,可以精确调节所制造纤维的机械行为。该技术已成功用于制造广泛的蛋白纤维,并推进了蛋白纤维的生产效率及其在各个领域的应用。本文综述了基于微流控技术的蛋白纤维的设计及制造的最新进展。首先简要讨论了天然蜘蛛丝的纺丝过程和微流控技术的纺丝过程。进而,着重讨论了通过微流控技术再生的蛋白纤维的制造及其力学性能,接着讨论了重组蛋白纤维。此外,对其他来源的蛋白纤维也进行了详细回顾。最后,对制造蛋白纤维的微流控技术的发展进行了简要总结与展望。

图片

图1

图2

图3

图4

图5

图6

参考文献

[ 1 ] Sun J, Su J, Ma C, Göstl R, Herrmann A, Liu K, et al. Fabrication and mechanical properties of engineered protein-based adhesives and fibers. Adv Mater 2020;32(6):e1906360. 链接1

[ 2 ] Heim M, Keerl D, Scheibel T. Spider silk: from soluble protein to extraordinary fiber. Angew Chem Int Ed Engl 2009;48(20):3584–96. 链接1

[ 3 ] Vepari C, Kaplan DL. Silk as a biomaterial. Prog Polym Sci 2007;32(8– 9):991–1007. 链接1

[ 4 ] Omenetto FG, Kaplan DL. New opportunities for an ancient material. Science 2010;329(5991):528–31. 链接1

[ 5 ] Lewis RV. Spider silk: ancient ideas for new biomaterials. Chem Rev 2006;106 (9):3762–74. 链接1

[ 6 ] Sun J, Li B, Wang F, Feng J, Ma C, Liu K, et al. Proteinaceous fibers with outstanding mechanical properties manipulated by supramolecular interactions. CCS Chem 2020;2:1669–77. 链接1

[ 7 ] Zhang J, Liu Y, Sun J, Gu R, Ma C, Liu K. Biological fibers based on naturally sourced proteins: mechanical investigation and applications. Mater Today Adv 2020;8:100095. 链接1

[ 8 ] Fredriksson C, Hedhammar M, Feinstein R, Nordling K, Kratz G, Johansson J, et al. Tissue response to subcutaneously implanted recombinant spider silk: an in vivo study. Materials 2009;2(4):1908–22. 链接1

[ 9 ] DeFrates K, Moore R, Borgesi J, Lin G, Mulderig T, Beachley V, et al. Proteinbased fiber materials in medicine: a review. Nanomaterials 2018;8(7):457. 链接1

[10] Kluge JA, Rabotyagova O, Leisk GG, Kaplan DL. Spider silks and their applications. Trends Biotechnol 2008;26(5):244–51. 链接1

[11] Spiess K, Lammel A, Scheibel T. Recombinant spider silk proteins for applications in biomaterials. Macromol Biosci 2010;10(9):998–1007. 链接1

[12] Zhang B, Gao L, Ma L, Luo Y, Yang H, Cui Z. 3D bioprinting: a novel avenue for manufacturing tissues and organs. Engineering 2019;5(4):777–94. 链接1

[13] Li M, Mondrinos MJ, Gandhi MR, Ko FK, Weiss AS, Lelkes PI. Electrospun protein fibers as matrices for tissue engineering. Biomaterials 2005;26(30):5999–6008. 链接1

[14] Kumar S, Singh AP, Senapati S, Maiti P. Controlling drug delivery using nanosheet-embedded electrospun fibers for efficient tumor treatment. ACS Appl Bio Mater 2019;2(2):884–94. 链接1

[15] Memic A, Abudula T, Mohammed HS, Joshi Navare K, Colombani T, Bencherif SA. Latest progress in electrospun nanofibers for wound healing applications. ACS Appl Bio Mater 2019;2(3):952–69. 链接1

[16] Lazaris A, Arcidiacono S, Huang Y, Zhou JF, Duguay F, Chretien N, et al. Spider silk fibers spun from soluble recombinant silk produced in mammalian cells. Science 2002;295(5554):472–6. 链接1

[17] Li Y, Li J, Sun J, He H, Li B, Ma C, et al. Bioinspired and mechanically strong fibers based on engineered non-spider chimeric proteins. Angew Chem Int Ed Engl 2020;59(21):8148–52. 链接1

[18] Magaz A, Roberts AD, Faraji S, Nascimento TRL, Medeiros ES, Zhang W, et al. Porous, aligned, and biomimetic fibers of regenerated silk fibroin produced by solution blow spinning. Biomacromolecules 2018;19(12):4542–53. 链接1

[19] SunM, Zhang Y, Zhao Y, Shao H, Hu X. The structure-property relationships of artificial silk fabricated by dry-spinning process. J Mater Chem 2012;22(35):18372–9. 链接1

[20] Dong Z, Zhu H, Hang Y, Liu G, Jin W. Polydimethylsiloxane (PDMS) composite membrane fabricated on the inner surface of a ceramic hollow fiber: from single-channel to multi-channel. Engineering 2020;6(1):89–99. 链接1

[21] Koeppel A, Holland C. Progress and trends in artificial silk spinning: a systematic review. ACS Biomater Sci Eng 2017;3(3):226–37. 链接1

[22] Zheng Ke, Ling S. De novo design of recombinant spider silk proteins for material applications. Biotechnol J 2019;14(1):e1700753. 链接1

[23] Rising A, Johansson J. Toward spinning artificial spider silk. Nat Chem Biol 2015;11(5):309–15. 链接1

[24] Mercader C, Lucas A, Derre A, Zakri C, Moisan S, Maugey M, et al. Kinetics of fiber solidification. Proc Natl Acad Sci USA 2010;107(43):18331–5. 链接1

[25] Tokareva O, Michalczechen-Lacerda VA, Rech EL, Kaplan DL. Recombinant DNA production of spider silk proteins. Microb Biotechnol 2013;6(6):651–63. 链接1

[26] Nge PN, Rogers CI, Woolley AT. Advances in microfluidic materials, functions, integration, and applications. Chem Rev 2013;113(4):2550–83. 链接1

[27] Nielsen JB, Hanson RL, Almughamsi HM, Pang C, Fish TR, Woolley AT. Microfluidics: innovations in materials and their fabrication and functionalization. Anal Chem 2020;92(1):150–68. 链接1

[28] Du XY, Li Q, Wu G, Chen S. Multifunctional micro/nanoscale fibers based on microfluidic spinning technology. Adv Mater 2019;31(52):e1903733. 链接1

[29] Shi X, Ostrovidov S, Zhao Y, Liang X, Kasuya M, Kurihara K, et al. Microfluidic spinning of cell-responsive grooved microfibers. Adv Funct Mater 2015;25 (15):2250–9. 链接1

[30] McNamara MC, Sharifi F, Okuzono J, Montazami R, Hashemi NN. Microfluidic manufacturing of alginate fibers with encapsulated astrocyte cells. ACS Appl Bio Mater 2019;2(4):1603–13. 链接1

[31] Shang L, Wang Y, Yu Y, Wang J, Zhao Z, Xu H, et al. Bio-inspired stimuliresponsive graphene oxide fibers from microfluidics. J Mater Chem A Mater Energy Sustain 2017;5(29):15026–30. 链接1

[32] Yu Y, Fu F, Shang L, Cheng Y, Gu Z, Zhao Y. Bioinspired helical microfibers from microfluidics. Adv Mater 2017;29(18):1605765. 链接1

[33] Zhang J, Sun J, Li Bo, Yang C, Shen J, Wang N, et al. Robust biological fibers based on widely available proteins: facile fabrication and suturing application. Small 2020;16(8):e1907598. 链接1

[34] Kang E, Choi YY, Chae SK, Moon JH, Chang JY, Lee SH. Microfluidic spinning of flat alginate fibers with grooves for cell-aligning scaffolds. Adv Mater 2012;24 (31):4271–7. 链接1

[35] Wilson EK. Wearable sweat sensors. Engineering 2019;5(3):359–60. 链接1

[36] Chen F, Fraietta JA, June CH, Xu Z, Joseph Melenhorst J, Lacey SF. Engineered T cell therapies from a drug development viewpoint. Engineering 2019;5(1): 140–9. 链接1

[37] Chen X, Shao Z, Vollrath F. The spinning processes for spider silk. Soft Matter 2006;2(6):448–51. 链接1

[38] Vollrath F, Knight DP. Liquid crystalline spinning of spider silk. Nature 2001;410(6828):541–8. 链接1

[39] Yang Y, Chen X, Shao Z, Zhou P, Porter D, Knight DP, et al. Toughness of spider silk at high and low temperatures. Adv Mater 2005;17(1):84–8. 链接1

[40] Cheng J, Jun Y, Qin J, Lee SH. Electrospinning versus microfluidic spinning of functional fibers for biomedical applications. Biomaterials 2017; 114:121–43. 链接1

[41] Steudle LM, Frank E, Ota A, Hageroth U, Henzler S, Schuler W, et al. Carbon fibers prepared from melt spun peracylated softwood lignin: an integrated approach. Macromol Mater Eng 2017;302(4):1600441. 链接1

[42] Kwak EA, Ahn S, Jaworski J. Microfabrication of custom collagen structures capable of guiding cell morphology and alignment. Biomacromolecules 2015;16(6):1761–70. 链接1

[43] Kinahan ME, Filippidi E, Köster S, Hu X, Evans HM, Pfohl T, et al. Tunable silk: using microfluidics to fabricate silk fibers with controllable properties. Biomacromolecules 2011;12(5):1504–11. 链接1

[44] Luo J, Zhang L, Peng Q, Sun M, Zhang Y, Shao H, et al. Tough silk fibers prepared in air using a biomimetic microfluidic chip. Int J Biol Macromol 2014;66: 319–24. 链接1

[45] Luo J, Zhang Y, Huang Y, Shao H, Hu X. A bio-inspired microfluidic concentrator for regenerated silk fibroin solution. Sens Actuators B Chem 2012;162 (1):435–40. 链接1

[46] Shao Z, Vollrath F. Surprising strength of silkworm silk. Nature 2002;418 (6899):741. 链接1

[47] Mittal N, Ansari F, Gowda.V K, Brouzet C, Chen P, Larsson PT, et al. Multiscale control of nanocellulose assembly: transferring remarkable nanoscale fibril mechanics to macroscale fibers. ACS Nano 2018;12(7):6378–88. 链接1

[48] Mittal N, Jansson R, Widhe M, Benselfelt T, Håkansson KMO, Lundell F, et al. Ultrastrong and bioactive nanostructured bio-based composites. ACS Nano 2017;11(5):5148–59. 链接1

[49] Lu Li, Fan S, Niu Q, Peng Q, Geng L, Yang G, et al. Strong silk fibers containing cellulose nanofibers generated by a bioinspired microfluidic chip. ACS Sustain Chem Eng 2019;7(17):14765–74. 链接1

[50] Heidebrecht A, Eisoldt L, Diehl J, Schmidt A, Geffers M, Lang G, et al. Biomimetic fibers made of recombinant spidroins with the same toughness as natural spider silk. Adv Mater 2015;27(13):2189–94. 链接1

[51] Tao Hu, Kaplan DL, Omenetto FG. Silk materials—a road to sustainable high technology. Adv Mater 2012;24(21):2824–37. 链接1

[52] Xia XX, Qian ZG, Ki CS, Park YH, Kaplan DL, Lee SY. Native-sized recombinant spider silk protein produced in metabolically engineered Escherichia coli results in a strong fiber. Proc Natl Acad Sci USA 2010;107 (32):14059–63. 链接1

[53] Venkatesan H, Chen J, Hu J. Fibers made of recombinant spidroins—a brief review. AATCC J Res 2019;6(3):37–40. 链接1

[54] Peng Q, Zhang Y, Lu Li, Shao H, Qin K, Hu X, et al. Recombinant spider silk from aqueous solutions via a bio-inspired microfluidic chip. Sci Rep 2016;6 (1):36473. 链接1

[55] Yaari A, Schilt Y, Tamburu C, Raviv U, Shoseyov O. Wet spinning and drawing of human recombinant collagen. ACS Biomater Sci Eng 2016;2(3):349–60. 链接1

[56] Chiang CY, Mello CM, Gu J, Silva ECCM, Van Vliet KJ, Belcher AM. Weaving genetically engineered functionality into mechanically robust virus fibers. Adv Mater 2007;19(6):826–32. 链接1

[57] Fu J, Guerette PA, Pavesi A, Horbelt N, Lim CT, Harrington MJ, et al. Artificial hagfish protein fibers with ultra-high and tunable stiffness. Nanoscale 2017;9 (35):12908–15. 链接1

[58] Kim W, Chaikof EL. Recombinant elastin-mimetic biomaterials: emerging applications in medicine. Adv Drug Deliv Rev 2010;62(15):1468–78. 链接1

[59] He H, Yang C, Wang F, Wei Z, Shen J, Chen D, et al. Mechanically strong globular-protein-based fibers obtained using a microfluidic spinning technique. Angew Chem Int Ed Engl 2020;59(11):4344–8. 链接1

[60] Lin S, Ryu S, Tokareva O, Gronau G, Jacobsen MM, Huang W, et al. Predictive modelling-based design and experiments for synthesis and spinning of bioinspired silk fibres. Nat Commun 2015;6(1):6892. 链接1

[61] Madurga R, Gañán-Calvo AM, Plaza GR, Atienza JM, Guinea GV, Elices M, et al. Comparison of the effects of post-spinning drawing and wet stretching on regenerated silk fibers produced through straining flow spinning. Polymer 2018;150:311–7. 链接1

[62] Copeland CG, Bell BE, Christensen CD, Lewis RV. Development of a process for the spinning of synthetic spider silk. ACS Biomater Sci Eng 2015;1(7):577–84. 链接1

[63] Haynl C, Hofmann E, Pawar K, Förster S, Scheibel T.Microfluidics-produced collagen fibers show extraordinary mechanical properties. Nano Lett 2016;16(9): 5917–22. 链接1

[64] Siriwardane ML, DeRosa K, Collins G, Pfister BJ. Controlled formation of crosslinked collagen fibers for neural tissue engineering applications. Biofabrication 2014;6(1):015012. 链接1

[65] Kamada A, Mittal N, Söderberg LD, Ingverud T, Ohm W, Roth SV, et al. Flowassisted assembly of nanostructured protein microfibers. Proc Natl Acad Sci USA 2017;114(6):1232–7. 链接1

[66] Kamada A, Levin A, Toprakcioglu Z, Shen Yi, Lutz-Bueno V, Baumann KN, et al. Modulating the mechanical performance of macroscale fibers through shearinduced alignment and assembly of protein nanofibrils. Small 2020;16(9):e1904190. 链接1

相关研究