期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2021年 第7卷 第5期 doi: 10.1016/j.eng.2021.02.006

利用液相透射电子显微镜技术研究纳米气泡在表面活性剂水溶液中的动力机制

a School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
b Center for Nanoparticle Research, Institute of Basic Science (IBS), Seoul 08826, Republic of Korea
c Department of Mechanical Engineering, BK21 FOUR ERICA-ACE Center, Hanyang University, Ansan 15588, Republic of Korea
d Department of Organic Materials and Fiber Engineering, Soongsil University, Seoul 06978, Republic of Korea
e Department of Chemistry, Sunchon National University, Suncheon 57922, Republic of Korea

收稿日期: 2020-09-11 修回日期: 2020-12-17 录用日期: 2021-02-08 发布日期: 2021-03-31

下一篇 上一篇

摘要

纳米气泡因其超长的寿命和作为纳米级载体的潜力而在各种工业应用中受到广泛关注。纳米气泡的稳定性和理化性质对表面活性剂的存在高度敏感,表面活性剂可降低其表面张力或提高其静电稳定性。在本文中,我们报道了在存在可溶性表面活性剂的条件下纳米气泡动态行为的实时观察结果。利用多室石墨烯液体池液相透射电子显微镜(TEM),在相同的成像条件下观察了体相纳米气泡和表面纳米气泡。对纳米气泡的直接观察结果表明,稳定的气体传输在没有界面融合的情况下经常发生,而在相互作用的含表面活性剂的纳米气泡界面之间存在狭窄的距离。结果也阐明了纳米气泡的界面曲率是决定其界面稳定性的重要因素。

图片

图1

图2

图3

图4

参考文献

[ 1 ] Zhu J, An H, Alheshibri M, Liu L, Terpstra PMJ, Liu G, et al. Cleaning with bulk nanobubbles. Langmuir 2016;32(43):11203–11. 链接1

[ 2 ] Agarwal A, Ng WJ, Liu Y. Principle and applications of microbubble and nanobubble technology for water treatment. Chemosphere 2011;84 (9):1175–80. 链接1

[ 3 ] Temesgen T, Bui TT, Han M, Kim TI, Park H. Micro and nanobubble technologies as a new horizon for water-treatment techniques: a review. Adv Colloid Interface Sci 2017;246:40–51. 链接1

[ 4 ] Atkinson AJ, Apul OG, Schneider O, Garcia-Segura S, Westerhoff P. Nanobubble technologies offer opportunities to improve water treatment. Acc Chem Res 2019;52(5):1196–205. 链接1

[ 5 ] Misra SK, Ghoshal G, Gartia MR, Wu Z, De AK, Ye M, et al. Trimodal therapy: combining hyperthermia with repurposed bexarotene and ultrasound for treating liver cancer. ACS Nano 2015;9(11):10695–718. 链接1

[ 6 ] Xing Z, Wang J, Ke H, Zhao B, Yue X, Dai Z, et al. The fabrication of novel nanobubble ultrasound contrast agent for potential tumor imaging. Nanotechnology 2010;21(14):145607. 链接1

[ 7 ] Zhang X, Chan DY, Wang D, Maeda N. Stability of interfacial nanobubbles. Langmuir 2013;29(4):1017–23. 链接1

[ 8 ] Alheshibri M, Qian J, Jehannin M, Craig VS. A history of nanobubbles. Langmuir 2016;32(43):11086–100. 链接1

[ 9 ] Kim E, Choe JK, Kim BH, Kim J, Park J, Choi Y. Unraveling the mystery of ultrafine bubbles: establishment of thermodynamic equilibrium for submicron bubbles and its implications. J Colloid Interface Sci 2020;570:173–81. 链接1

[10] Epstein PS, Plesset MS. On the stability of gas bubbles in liquid–gas solutions. J Chem Phys 1950;18(11):1505–9. 链接1

[11] Craig VSJ. Very small bubbles at surfaces—the nanobubble puzzle. Soft Matter 2011;7(1):40–8. 链接1

[12] Li D, Jing D, Pan Y, Wang W, Zhao X. Coalescence and stability analysis of surface nanobubbles on the polystyrene/water interface. Langmuir 2014;30 (21):6079–88. 链接1

[13] Hampton MA, Nguyen AV. Nanobubbles and the nanobubble bridging capillary force. Adv Colloid Interface Sci 2010;154(1–2):30–55. 链接1

[14] Li M, Tonggu L, Zhan X, Mega TL, Wang L. Cryo-EM visualization of nanobubbles in aqueous solutions. Langmuir 2016;32(43):11111–5. 链接1

[15] Hernandez C, Gulati S, Fioravanti G, Stewart PL, Exner AA. Cryo-EM visualization of lipid and polymer-stabilized perfluorocarbon gas nanobubbles—a step towards nanobubble mediated drug delivery. Sci Rep 2017;7(1):13517. 链接1

[16] Liu Y, Zhang X. Nanobubble stability induced by contact line pinning. J Chem Phys 2013;138(1):014706. 链接1

[17] Tan BH, An H, Ohl CD. Resolving the pinning force of nanobubbles with optical microscopy. Phys Rev Lett 2017;118(5):054501. 链接1

[18] Lohse D, Zhang X. Pinning and gas oversaturation imply stable single surface nanobubbles. Phys Rev E Stat Nonlin Soft Matter Phys 2015;91(3):031003. 链接1

[19] Kim JW, Lee D, Shum HC, Weitz DA. Colloid surfactants for emulsion stabilization. Adv Mater 2008;20(17):3239–43. 链接1

[20] Zhao CX, Chen D, Hui Y, Weitz DA, Middelberg APJ. Controlled generation of ultrathin-shell double emulsions and studies on their stability. ChemPhysChem 2017;18(10):1393–9. 链接1

[21] Haney B, Chen D, Cai LH, Weitz D, Ramakrishnan S. Millimeter-size Pickering emulsions stabilized with Janus microparticles. Langmuir 2019;35(13):4693–701. 链接1

[22] Nirmalkar N, Pacek AW, Barigou M. Interpreting the interfacial and colloidal stability of bulk nanobubbles. Soft Matter 2018;14(47):9643–56. 链接1

[23] Xiao Q, Liu Y, Guo Z, Liu Z, Zhang X. How nanobubbles lose stability: effects of surfactants. Appl Phys Lett 2017;111(13):131601. 链接1

[24] Nirmalkar N, Pacek AW, Barigou M. On the existence and stability of bulk nanobubbles. Langmuir 2018;34(37):10964–73. 链接1

[25] Ross FM. Liquid cell electron microscopy. Cambridge: Cambridge University Press; 2016. 链接1

[26] Kim BH, Yang J, Lee D, Choi BK, Hyeon T, Park J. Liquid-phase transmission electron microscopy for studying colloidal inorganic nanoparticles. Adv Mater 2018;30(4):1703316. 链接1

[27] De Yoreo JJ, Sommerdijk NAJM. Investigating materials formation with liquidphase and cryogenic TEM. Nat Rev Mater 2016;1(8):1–18. 链接1

[28] Smith JW, Chen Q. Liquid-phase electron microscopy imaging of cellular and biomolecular systems. J Mater Chem B Mater Biol Med 2020;8(37):8490–506. 链接1

[29] Yang J, Alam SB, Yu L, Chan E, Zheng H. Dynamic behavior of nanoscale liquids in graphene liquid cells revealed by in situ transmission electron microscopy. Micron 2019;116:22–9. 链接1

[30] Tomo Y, Takahashi K, Nishiyama T, Ikuta T, Takata Y. Nanobubble nucleation studied using Fresnel fringes in liquid cell electron microscopy. Int J Heat Mass Transfer 2017;108:1460–5. 链接1

[31] Kim Q, Shin D, Park J, Weitz DA, Jhe W. Initial growth dynamics of 10 nm nanobubbles in the graphene liquid cell. Appl Nanosci 2018;11(1):1–7. 链接1

[32] Huang TW, Liu SY, Chuang YJ, Hsieh HY, Tsai CY, Wu WJ, et al. Dynamics of hydrogen nanobubbles in KLH protein solution studied with in situ wet-TEM. Soft Matter 2013;9(37):8856–61. 链接1

[33] White ER, Mecklenburg M, Singer SB, Aloni S, Regan BC. Imaging nanobubbles in water with scanning transmission electron microscopy. Appl Phys Express 2011;4(5):055201. 链接1

[34] Park JB, Shin D, Kang S, Cho SP, Hong BH. Distortion in two-dimensional shapes of merging nanobubbles: evidence for anisotropic gas flow mechanism. Langmuir 2016;32(43):11303–8. 链接1

[35] Shin D, Park JB, Kim YJ, Kim SJ, Kang JH, Lee B, et al. Growth dynamics and gas transport mechanism of nanobubbles in graphene liquid cells. Nat Commun 2015;6(1):6068. 链接1

[36] Lim K, Bae Y, Jeon S, Kim K, Kim BH, Kim J, et al. A large-scale array of ordered graphene-sandwiched chambers for quantitative liquid-phase transmission electron microscopy. Adv Mater 2020;32(39):e2002889. 链接1

[37] Regan W, Alem N, Alemán B, Geng B, Girit Ç, Maserati L, et al. A direct transfer of layer-area graphene. Appl Phys Lett 2010;96(11):113102. 链接1

[38] Shah SK, Chatterjee SK, Bhattarai A. Micellization of cationic surfactants in alcohol–water mixed solvent media. J Mol Liq 2016;222:906–14. 链接1

[39] Jiao J, He Y, Yasui K, Kentish SE, Ashokkumar M, Manasseh R, et al. Influence of acoustic pressure and bubble sizes on the coalescence of two contacting bubbles in an acoustic field. Ultrason Sonochem 2015;22:70–7. 链接1

[40] Postema M, Marmottant P, Lancée CT, Hilgenfeldt S, Jong Nd. Ultrasoundinduced microbubble coalescence. Ultrasound Med Biol 2004;30(10):1337–44. 链接1

[41] Bala Subramaniam A, Abkarian M, Mahadevan L, Stone HA. Colloid science: non-spherical bubbles. Nature 2005;438(7070):930. 链接1

[42] Grogan JM, Schneider NM, Ross FM, Bau HH. Bubble and pattern formation in liquid induced by an electron beam. Nano Lett 2014;14(1):359–64. 链接1

[43] Cho H, Jones MR, Nguyen SC, Hauwiller MR, Zettl A, Alivisatos AP. The use of graphene and its derivatives for liquid-phase transmission electron microscopy of radiation-sensitive specimens. Nano Lett 2017;17(1):414–20. 链接1

[44] Zan R, Ramasse QM, Jalil R, Georgiou T, Bangert U, Novoselov KS. Control of radiation damage in MoS2 by graphene encapsulation. ACS Nano 2013;7 (11):10167–74. 链接1

[45] Ke S, Xiao W, Quan N, Dong Y, Zhang L, Hu J. Formation and stability of bulk nanobubbles in different solutions. Langmuir 2019;35(15):5250–6. 链接1

[46] Hamamoto S, Takemura T, Suzuki K, Nishimura T. Effects of pH on nano-bubble stability and transport in saturated porous media. J Contam Hydrol 2018;208:61–7. 链接1

相关研究