期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2021年 第7卷 第5期 doi: 10.1016/j.eng.2021.02.007

封装分子识别纳米凝胶的功能胶囊用于简捷有效移除水中有机微污染物

a School of Chemical Engineering & State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China
b State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China

收稿日期: 2020-08-11 修回日期: 2020-11-05 录用日期: 2021-02-08 发布日期: 2021-04-02

下一篇 上一篇

摘要

本文提出了一种利用封装具有分子识别特性纳米凝胶的功能胶囊简捷有效移除水中有机微污染物(OMP)的新方法。该功能胶囊由具有半透膜特性的海藻酸钙(Ca-Alg)凝胶囊膜和具有分子识别特性的聚[N-异丙基丙烯酰胺-共聚-丙烯酸-接枝-单(6-乙二胺基-6-去氧)-β-环糊精](PNCD)纳米凝胶组成。其中,具有半透膜特性的Ca-Alg凝胶囊膜可以使OMP和水分子自由跨膜传输进入囊的内部,而截留封装的PNCD纳米凝胶。以具有毒性且在水中分布较广的双酚A(BPA)作为模型OMP,基于主-客体识别络合作用,PNCD纳米凝胶上的CD基团能够有效捕捉BPA分子。基于此,将功能胶囊置于含有BPA的水溶液中,即可实现水中OMP的简捷有效移除。另外,由于功能胶囊具有毫米尺度,进一步利用滤网即可便捷地将胶囊从溶液中分离出来。该功能胶囊对BPA的吸附动力学符合拟二级动力学模型,且其等温吸附热力学同时满足Freundlich以及Langmuir等温吸附模型。另外,由于所制备的PNCD纳米凝胶具有温敏性,进一步利用纯水,在高于PNCD纳米凝胶的体积相变温度的条件下,反复清洗胶囊即可实现胶囊的循环再生利用。因此,本研究提出的方法
为简捷有效地移除水中OMP提供了一种新的策略。

补充材料

图片

图1

图2

图3

图4

图5

图6

图7

参考文献

[ 1 ] Schwarzenbach RP, Escher BI, Fenner K, Hofstetter TB, Johnson CA, von Gunten U, et al. The challenge of micropollutants in aquatic systems. Science 2006;313 (5790):1072–7. 链接1

[ 2 ] Anh HQ, Tomioka K, Tue NM, Tuyen LH, Chi NK, Minh TB, et al. A preliminary investigation of 942 organic micro-pollutants in the atmosphere in waste processing and urban areas, northern Vietnam: levels, potential sources, and risk assessment. Ecotoxicol Environ Saf 2019;167:354–64. 链接1

[ 3 ] Eggen RIL, Hollender J, Joss A, Schärer M, Stamm C. Reducing the discharge of micropollutants in the aquatic environment: the benefits of upgrading wastewater treatment plants. Environ Sci Technol 2014;48(14):7683–9. 链接1

[ 4 ] Hollender J, Zimmermann SG, Koepke S, Krauss M, McArdell CS, Ort C, et al. Elimination of organic micropollutants in a municipal wastewater treatment plant upgraded with a full-scale post-ozonation followed by sand filtration. Environ Sci Technol 2009;43(20):7862–9. 链接1

[ 5 ] Xu J, Wang L, Zhu Y. Decontamination of bisphenol A from aqueous solution by graphene adsorption. Langmuir 2012;28(22):8418–25. 链接1

[ 6 ] Chang HS, Choo KH, Lee B, Choi SJ. The methods of identification, analysis, and removal of endocrine disrupting compounds (EDCs) in water. J Hazard Mater 2009;172(1):1–12. 链接1

[ 7 ] Ternes TA, Stumpf M, Mueller J, Haberer K, Wilken RD, Servos M. Behavior and occurrence of estrogens in municipal sewage treatment plants—I. investigations in Germany, Canada and Brazil. Sci Total Environ 1999;225(1– 2):81–90. 链接1

[ 8 ] Kloas W, Lutz I, Einspanier R. Amphibians as a model to study endocrine disruptors: II. estrogenic activity of environmental chemicals in vitro and in vivo. Sci Total Environ 1999;225(1–2):59–68. 链接1

[ 9 ] Dao KC, Yang CC, Chen KF, Tsai YP. Recent trends in removal pharmaceuticals and personal care products by electrochemical oxidation and combined systems. Water 2020;12(4):1043. 链接1

[10] Xu Y, Liu T, Zhang Y, Ge F, Steel RM, Sun L. Advances in technologies for pharmaceuticals and personal care products removal. J Mater Chem A Mater Energy Sustain 2017;5(24):12001–14. 链接1

[11] Tay KS, Rahman NA, Radzi Bin Abas M. Kinetic studies of the degradation of parabens in aqueous solution by ozone oxidation. Environ Chem Lett 2010;8 (4):331–7.

[12] Xu L, Wang J. Magnetic nanoscaled Fe3O4/CeO2 composite as an efficient Fenton-like heterogeneous catalyst for degradation of 4-chlorophenol. Environ Sci Technol 2012;46(18):10145–53. 链接1

[13] Ouyang Z, Huang Z, Tang X, Xiong C, Tang M, Lu Y. A dually charged nanofiltration membrane by pH-responsive polydopamine for pharmaceuticals and personal care products removal. Separ Purif Technol 2019;211:90–7. 链接1

[14] Zangeneh H, Zinatizadeh AA, Zinadini S, Feyzi M, Bahnemann DW. Preparation and characterization of a novel photocatalytic self-cleaning PES nanofiltration membrane by embedding a visible-driven photocatalyst boron doped-TiO2– SiO2/CoFe2O4 nanoparticles. Separ Purif Technol 2019;209:764–75. 链接1

[15] Wang J, Zhu J, Tsehaye MT, Li J, Dong G, Yuan S, et al. High flux electroneutral loose nanofiltration membranes based on rapid deposition of polydopamine/ polyethyleneimine. J Mater Chem A Mater Energy Sustain 2017;5 (28):14847–57. 链接1

[16] Radjenovic´ J, Petrovic´ M, Ventura F, Barceló D. Rejection of pharmaceuticals in nanofiltration and reverse osmosis membrane drinking water treatment. Water Res 2008;42(14):3601–10. 链接1

[17] Fu J, Chen Z, Wang M, Liu S, Zhang J, Zhang J, et al. Adsorption of methylene blue by a high-efficiency adsorbent (polydopamine microspheres): kinetics, isotherm, thermodynamics and mechanism analysis. Chem Eng J 2015; 259:53–61. 链接1

[18] Rizzo L, Fiorentino A, Grassi M, Attanasio D, Guida M. Advanced treatment of urban wastewater by sand filtration and graphene adsorption for wastewater reuse: effect on a mixture of pharmaceuticals and toxicity. J Environ Chem Eng 2015;3(1):122–8. 链接1

[19] Xu J, Li L, Guo C, Zhang Y, Meng W. Photocatalytic degradation of carbamazepine by tailored BiPO4: efficiency, intermediates and pathway. Appl Catal B 2013;130–131:285–92. 链接1

[20] Yuan F, Hu C, Hu X, Wei D, Chen Y, Qu J. Photodegradation and toxicity changes of antibiotics in UV and UV/H2O2 process. J Hazard Mater 2011;185(2– 3):1256–63. 链接1

[21] Zhang R, Sun P, Boyer TH, Zhao L, Huang CH. Degradation of pharmaceuticals and metabolite in synthetic human urine by UV, UV/H2O2, and UV/PDS. Environ Sci Technol 2015;49(5):3056–66. 链接1

[22] Rosenfeldt EJ, Linden KG. Degradation of endocrine disrupting chemicals bisphenol A, ethinyl estradiol, and estradiol during UV photolysis and advanced oxidation processes. Environ Sci Technol 2004;38(20):5476–83. 链接1

[23] Schrotter JC, Bozkaya-Schrotter B. Current and emerging membrane processes for water treatment. Membr Technol 2010;4:53–91. 链接1

[24] Rana D, Narbaitz RM, Garand-Sheridan AM, Westgate A, Matsuura T, Tabe S, et al. Development of novel charged surface modifying macromolecule blended PES membranes to remove EDCs and PPCPs from drinking water sources. J Mater Chem A Mater Energy Sustain 2014;2(26):10059–72. 链接1

[25] Chen ZH, Liu Z, Hu JQ, Cai QW, Li XY, Wang W, et al. b-Cyclodextrin-modified graphene oxide membranes with large adsorption capacity and high flux for efficient removal of bisphenol A from water. J Membr Sci 2020;595:117510. 链接1

[26] Kim JH, Park PK, Lee CH, Kwon HH. Surface modification of nanofiltration membranes to improve the removal of organic micro-pollutants (EDCs and PhACs) in drinking water treatment: graft polymerization and cross-linking followed by functional group substitution. J Membr Sci 2008;321(2):190–8. 链接1

[27] Zhang YM, Xu QY, Liu Y. Molecular recognition and biological application of modified b-cyclodextrins. Sci China Chem 2019;62(5):549–60. 链接1

[28] Yamaguchi H, Kobayashi Y, Kobayashi R, Takashima Y, Hashidzume A, Harada A. Photoswitchable gel assembly based on molecular recognition. Nat Commun 2012;3(1):603. 链接1

[29] Takashima Y, Hatanaka S, Otsubo M, Nakahata M, Kakuta T, Hashidzume A, et al. Expansion-contraction of photoresponsive artificial muscle regulated by host–guest interactions. Nat Commun 2012;3(1):1270. 链接1

[30] Alsbaiee A, Smith BJ, Xiao L, Ling Y, Helbling DE, Dichtel WR. Rapid removal of organic micropollutants from water by a porous b-cyclodextrin polymer. Nature 2016;529(7585):190–4. 链接1

[31] Jiang N, Shang R, Heijman SGJ, Rietveld LC. High-silica zeolites for adsorption of organic micro-pollutants in water treatment: a review. Water Res 2018;144:145–61. 链接1

[32] Oliveira FR, Patel AK, Jaisi DP, Adhikari S, Lu H, Khanal SK. Environmental application of biochar: current status and perspectives. Bioresour Technol 2017;246:110–22. 链接1

[33] Rodriguez E, Campinas M, Acero JL, Rosa MJ. Investigating PPCP removal from wastewater by powdered activated carbon/ultrafiltration. Water Air Soil Pollut 2016;227:177. 链接1

[34] Sui Q, Huang J, Liu Y, Chang X, Ji G, Deng S, et al. Rapid removal of bisphenol A on highly ordered mesoporous carbon. J Environ Sci 2011;23(2):177–82. 链接1

[35] Le HH, Carlson EM, Chua JP, Belcher SM. Bisphenol A is released from polycarbonate drinking bottles and mimics the neurotoxic actions of estrogen in developing cerebellar neurons. Toxicol Lett 2008;176(2):149–56. 链接1

[36] Yan PJ, He F, Wang W, Zhang SY, Zhang L, Li M, et al. Novel membrane detector based on smart nanogels for ultrasensitive detection of trace threat substances. ACS Appl Mater Interfaces 2018;10(42):36425–34. 链接1

[37] Wang JY, Jin Y, Xie R, Liu JY, Ju XJ, Meng T, et al. Novel calcium-alginate capsules with aqueous core and thermo-responsive membrane. J Colloid Interface Sci 2011;353(1):61–8. 链接1

[38] He F, Mei L, Ju XJ, Xie R, Wang W, Liu Z, et al. pH-responsive controlled release characteristics of solutes with different molecular weights diffusing across membranes of Ca-alginate/protamine/silica hybrid capsules. J Membr Sci 2015;474:233–43. 链接1

[39] He F, Wang W, He XH, Yang XL, Li M, Xie R, et al. Controllable multicompartmental capsules with distinct cores and shells for synergistic release. ACS Appl Mater Interfaces 2016;8(13):8743–54. 链接1

[40] Bremond N, Santanach-Carreras E, Chu LY, Bibette J. Formation of liquid-core capsules having a thin hydrogel membrane: liquid pearls. Soft Matter 2010;6 (11):2484–8. 链接1

[41] Liu YM, Ju XJ, Xin Y, Zheng WC, Wang W, Wei J, et al. A novel smart microsphere with magnetic core and ion-recognizable shell for Pb2+ adsorption and separation. ACS Appl Mater Interfaces 2014;6(12):9530–42. 链接1

[42] Ho YS, McKay G. Pseudo-second order model for sorption processes. Process Biochem 1999;34(5):451–65. 链接1

[43] Redlich O, Peterson DL. A useful adsorption isotherm. J Phys Chem 1959;63 (6):1024.

[44] Xin X, Wei Q, Yang J, Yan L, Feng R, Chen G, et al. Highly efficient removal of heavy metal ions by amine-functionalized mesoporous Fe3O4 nanoparticles. Chem Eng J 2012;184:132–40. 链接1

[45] Pan L, Zhai G, Yang X, Yu H, Cheng C. Thermosensitive microgels-decorated magnetic graphene oxides for specific recognition and adsorption of Pb(II) from aqueous solution. ACS Omega 2019;4(2):3933–45. 链接1

[46] Yang M, Chu LY, Xie R, Wang C. Molecular-recognition-induced phase transitions of two thermo-responsive polymers with pendent b-cyclodextrin groups. Macromol Chem Phys 2008;209(2):204–11. 链接1

[47] Ju XJ, Liu L, Xie R, Niu CH, Chu LY. Dual thermo-responsive and ionrecognizable monodisperse microspheres. Polymer 2009;50(3):922–9. 链接1

[48] Xiong W, Wang W, Wang Y, Zhao Y, Chen H, Xu H, et al. Dual temperature/pHsensitive drug delivery of poly(N-isopropylacrylamide-co-acrylic acid) nanogels conjugated with doxorubicin for potential application in tumor hyperthermia therapy. Colloids Surf B Biointerfaces 2011;84(2):447–53. 链接1

[49] Liu WY, Ju XJ, Faraj Y, He F, Peng HY, Liu YQ, et al. Capsule membranes encapsulated with smart nanogels for facile detection of trace lead(II) ions in water. J Membr Sci 2020;613:118523. 链接1

[50] Dong Y, Wu D, Chen X, Lin Y. Adsorption of bisphenol A from water by surfactant-modified zeolite. J Colloid Interface Sci 2010;348(2):585–90. 链接1

相关研究