期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2021年 第7卷 第5期 doi: 10.1016/j.eng.2021.02.009

容易断裂的可降解塑料

a John A. Paulson School of Engineering and Applied Sciences, Kavli Institute for Bionano Science and Technology, Harvard University, Cambridge, MA 02138, USA
b State Key Laboratory of Fluid Power and Mechatronic System, Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Department of Engineering Mechanics & Center for X-Mechanics, Zhejiang University, Hangzhou 310027, China

收稿日期: 2020-08-30 修回日期: 2020-11-09 录用日期: 2021-02-08 发布日期: 2021-04-27

下一篇 上一篇

摘要

可降解塑料可以在特定环境中发生降解反应。上述降解反应动态过程的表征,往往通过测量塑料的质量和力学强度随时间的变化来实现。然而在塑料受到非均质降解的情况下,以上表征方法所得到的结果具有不准确性。本文研究了一种非均质的降解过程:可降解塑料在化学和外力的共同作用下,其中的裂纹发生扩展。在外力作用下,裂纹被打开,裂纹尖端暴露于化学侵蚀作用下,使其扩展速率超过整体均质降解速率。本文以聚乳酸(PLA)降解中的裂纹扩展为研究对象。PLA是一种聚酯类塑料,包含可被水解的酯键。使用剪刀在PLA薄膜上引入初始裂纹,然后搭建装置将其撕裂,并用显微镜记录裂纹的扩展过程。最终发现在加载的能量释放率范围内,裂纹扩展速率对载荷的变化不敏感,却对湿度和pH值具有较高的敏感性。这些发现将有助于可降解塑料的发展,并在医疗行业和环境可持续性发展方面具有重要意义。

图片

图1

图2

图3

图4

图5

图6

参考文献

[ 1 ] Siracusa V, Rocculi P, Romani S, Dalla RM. Biodegradable polymers for food packaging: a review. Trends Food Sci Technol 2008;19(12):634–43. 链接1

[ 2 ] Kyrikou I, Briassoulis D. Biodegradation of agricultural plastic films: a critical review. J Polym Environ 2007;15(2):125–50. 链接1

[ 3 ] Sabir MI, Xu X, Li L. A review on biodegradable polymeric materials for bone tissue engineering applications. J Mater Sci 2009;44(21):5713–24. 链接1

[ 4 ] Chu CC, von Fraunhofer JA, Greisler HP, editors. Wound closure biomaterials and devices. Boca Raton: CRC Press; 1996. 链接1

[ 5 ] Ren X. Biodegradable plastics: a solution or a challenge? J Clean Prod 2003;11 (1):27–40. 链接1

[ 6 ] Suzuki J. Study on ozone treatment of water-soluble polymers. I. Ozone degradation of polyethylene glycol in water. J Appl Polym Sci 1976;20 (1):93–103. 链接1

[ 7 ] Li S. Hydrolytic degradation characteristics of aliphatic polyesters derived from lactic and glycolic acids. J Biomed Mater Res 1999;48(3):342–53. 链接1

[ 8 ] Raghavan D. Characterization of biodegradable plastics. Polym Plast Technol Eng 1995;34(1):41–63. 链接1

[ 9 ] Singh BK, Walker A, Morgan JAW, Wright DJ. Effects of soil pH on the biodegradation of chlorpyrifos and isolation of a chlorpyrifos-degrading bacterium. Appl Environ Microbiol 2003;69(9):5198–206. 链接1

[10] Bisaria VS, Ghose TK. Biodegradation of cellulosic materials: substrates, microorganisms, enzymes and products. Enzyme Microb Technol 1981;3 (2):90–104. 链接1

[11] Guo M, Chu Z, Yao J, Feng W, Wang Y, Wang L, et al. The effects of tensile stress on degradation of biodegradable PLGA membranes: a quantitative study. Polym Degrad Stab 2016;124:95–100. 链接1

[12] Atlas RM. Effects of temperature and crude oil composition on petroleum biodegradation. Appl Microbiol 1975;30(3):396–403. 链接1

[13] Singh B, Sharma N. Mechanistic implications of plastic degradation. Polym Degrad Stab 2008;93(3):561–84. 链接1

[14] Okada T, Hayashi T, Ikada Y. Degradation of collagen suture in vitro and in vivo. Biomaterials 1992;13(7):448–54. 链接1

[15] Genieva SD, Vlaev LT, Atanassov AN. Study of the thermooxidative degradation kinetics of poly(tetrafluoroethene) using iso-conversional calculation procedure. J Therm Anal Calorim 2010;99(2):551–61. 链接1

[16] Shi M, Steck J, Yang X, Zhang G, Yin J, Suo Z. Cracks outrun erosion in degradable polymer. Extreme Mech Lett 2020;40:100978. 链接1

[17] Wiederhorn SM, Bolz LH. Stress corrosion and static fatigue of glass. J Am Ceram Soc 1970;53(10):543–8. 链接1

[18] Speidel MO. Stress corrosion cracking of aluminum alloys. Metall Trans A Phys Metall Mater Sci 1975;6(4):631–51. 链接1

[19] Wright DC. Environmental stress cracking of plastics. Shrop Shire: iSmithers Rapra Publishing; 1996. 链接1

[20] Robeson LM. Environmental stress cracking: a review. Polym Eng Sci 2013;53 (3):453–67. 链接1

[21] Braden M, Gent AN. The attack of ozone on stretched rubber vulcanizates. I. The rate of cut growth. J Appl Polym Sci 1960;3(7):90–9. 链接1

[22] Choi BH, Chudnovsky A, Sehanobish K. Stress corrosion cracking in plastic pipes: observation and modeling. Int J Fracture 2007;145(1):81–8. 链接1

[23] Ge H, Le JL, Mantell SC. Numerical modeling of stress corrosion cracking of polymers. Eng Fract Mech 2016;160:199–212. 链接1

[24] Masutani K, Kimura Y. PLA synthesis. From the monomer to the polymer. In: Jiménez A, Peltzer M, Ruseckaite R, editors. Poly(lactic acid) science and technology: processing, properties, additives and applications. Cambridge: The Royal Society of Chemistry; 2015. p. 1–36. 链接1

[25] Kulkarni RK, Moore EG, Hegyeli AF, Leonard F. Biodegradable poly(lactic acid) polymers. J Biomed Mater Res 1971;5(3):169–81. 链接1

[26] Siparsky GL, Voorhees KJ, Miao F. Hydrolysis of polylactic acid (PLA) and polycaprolactone (PCL) in aqueous acetonitrile solutions: autocatalysis. J Environ Polym Degrad 1998;6(1):31–41. 链接1

[27] Vert M, Mauduit J, Li S. Biodegradation of PLA/GA polymers: increasing complexity. Biomaterials 1994;15(15):1209–13. 链接1

[28] Van Nostrum CF, Veldhuis TFJ, Bos GW, Hennink WE. Hydrolytic degradation of oligo (lactic acid): a kinetic and mechanistic study. Polymer 2004;45 (20):6779–87. 链接1

[29] Lazzari S, Codari F, Storti G, Morbidelli M, Moscatelli D. Modeling the pHdependent PLA oligomer degradation kinetics. Polym Degrad Stab 2014;110:80–90. 链接1

[30] Von Burkersroda F, Schedl L, Göpferich A. Why degradable polymers undergo surface erosion or bulk erosion. Biomaterials 2002;23(21):4221–31. 链接1

[31] Chamas A, Moon H, Zheng J, Qiu Y, Tabassum T, Jang JH, et al. Degradation rates of plastics in the environment. ACS Sustain Chem Eng 2020;8 (9):3494–511. 链接1

[32] Pelegrini K, Donazzolo I, Brambilla V, Coulon Grisa AM, Piazza D, Zattera AJ, et al. Degradation of PLA and PLA in composites with triacetin and buriti fiber after 600 days in a simulated marine environment. J Appl Polym Sci 2016;133 (15):43290. 链接1

[33] Göpferich A. Polymer bulk erosion. Macromolecules 1997;30(9):2598–604. 链接1

[34] Ding Y, Xiao Q, Dauskardt RH. Molecular design of confined organic network hybrids with controlled deformation rate sensitivity and moisture resistance. Acta Mater 2018;142:162–71. 链接1

[35] Albertsson AC, Hakkarainen M. Designed to degrade. Science 2017;358 (6365):872–3. 链接1

[36] Rahman M. Degradation of polyesters in medical applications. In: Saleh HEDM, editor. Polyester. Rijeka: InTech; 2012. p. 99–132. 链接1

[37] Mansfield SD, Meder R. Cellulose hydrolysis—the role of monocomponent cellulases in crystalline cellulose degradation. Cellulose 2003;10(2):159–69. 链接1

[38] Warren RA. Microbial hydrolysis of polysaccharides. Annu Rev Microbiol 1996;50(1):183–212. 链接1

[39] Schollenberger CS, Stewart FD. Thermoplastic polyurethane hydrolysis stability. J Elastomers Plast 1971;3(1):28–56. 链接1

[40] Stokes K, McVenes R, Anderson JM. Polyurethane elastomer biostability. J Biomater Appl 1995;9(4):321–54. 链接1

[41] Yang X, Yang J, Chen L, Suo Z. Hydrolytic crack in a rubbery network. Extreme Mech Lett 2019;31:100531. 链接1

[42] Canadell J, Goossens H, Klumperman B. Self-healing materials based on disulfide links. Macromolecules 2011;44(8):2536–41. 链接1

[43] Shieh P, Zhang W, Husted KEL, Kristufek SL, Xiong B, Lundberg DJ, et al. Cleavable comonomers enable degradable, recyclable thermoset plastics. Nature 2020;583(7817):542–7. 链接1

相关研究