期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2021年 第7卷 第5期 doi: 10.1016/j.eng.2021.02.011

利用碱金属离子效应进行PEDOT:PSS 热电性能工程设计

a Zernike Institute for Advanced Materials, University of Groningen, Groningen 9747 AG, The Netherlands
b Stratingh Institute for Chemistry, University of Groningen, Groningen 9747 AG, The Netherlands

收稿日期: 2020-08-31 修回日期: 2020-12-05 录用日期: 2021-02-08 发布日期: 2021-05-07

下一篇 上一篇

摘要

聚(3,4-乙烯二氧噻吩):聚(苯乙烯磺酸)(PEDOT:PSS)的电学性能设计在传感器、热电(TE)发生器和太阳能电池中的空穴传输层等各种应用方面具有巨大的潜力。应用各种策略可实现PEDOT:PSS的最佳电学性能,如碱性溶液后处理。然而,目前尚不清楚碱性溶液后处理引起的结构转变背后的工作机制和确切细节。在本研究中,我们针对三种常见的绿色碱性溶液,即LiOH、NaOH和KOH的后处理效果提出了一项比较研究,利用原子力显微镜、掠入射广角X射线散射、三波段分光光度计光谱和衰减全反射傅里叶变换红外光谱等技术研究了碱性溶液后处理诱导的薄膜结构改变。碱性溶液诱导的结构改变是造成薄膜热电功率因子提高的原因,这取决于所用的碱性溶液。根据碱金属阳离子和PSS链之间的不同亲和力来解释这一结果,这种亲和力决定了PEDOT不同的去掺杂程度。本文的结果阐明了PEDOT:PSS在暴露于高pH值溶液时发生的结构重组,并可激发未来各种应用领域的pH值/离子响应器件的创新灵感。

补充材料

图片

图1

图2

图3

图4

图5

图6

图7

图8

参考文献

[ 1 ] Wang Y, Yang L, Shi XL, Shi X, Chen L, Dargusch MS, et al. Flexible thermoelectric materials and generators: challenges and innovations. Adv Mater 2019;31(29):1807916. 链接1

[ 2 ] McGrail BT, Sehirlioglu A, Pentzer E. Polymer composites for thermoelectric applications. Angew Chem Int Ed Engl 2015;54(6):1710–23. 链接1

[ 3 ] Liu J, Shi Y, Dong J, Nugraha MI, Qiu X, Su M, et al. Overcoming Coulomb interaction improves free-charge generation and thermoelectric properties for n-doped conjugated polymers. ACS Energy Lett 2019;4(7):1556–64. 链接1

[ 4 ] Wang Y, Zhu C, Pfattner R, Yan H, Jin L, Chen S, et al. A highly stretchable, transparent, and conductive polymer. Sci Adv 2017;3(3):e1602076. 链接1

[ 5 ] Rivnay J, Wang H, Fenno L, Deisseroth K, Malliaras GG. Next-generation probes, particles, and proteins for neural interfacing. Sci Adv 2017;3(6):e1601649. 链接1

[ 6 ] Feig VR, Tran H, Lee M, Bao Z. Mechanically tunable conductive interpenetrating network hydrogels that mimic the elastic moduli of biological tissue. Nat Commun 2018;9(1):2740. Erratum in: Nat Commun 2018;9(1):5030.

[ 7 ] Liu J, Ye G, van der Zee B, Dong J, Qiu X, Liu Y, et al. N-type organic thermoelectrics of donor–acceptor copolymers: improved power factor by molecular tailoring of the density of states. Adv Mater 2018;30(44):1804290. 链接1

[ 8 ] Liu J, Qiu L, Alessandri R, Qiu X, Portale G, Dong J, et al. Enhancing molecular ntype doping of donor–acceptor copolymers by tailoring side chains. Adv Mater 2018;30(7):1704630. 链接1

[ 9 ] Sun K, Zhang S, Li P, Xia Y, Zhang X, Du D, et al. Review on application of PEDOTs and PEDOT:PSS in energy conversion and storage devices. J Mater Sci Mater Electron 2015;26(7):4438–62. 链接1

[10] Zhang B, Sun J, Katz HE, Fang F, Opila RL. Promising thermoelectric properties of commercial PEDOT:PSS materials and their Bi2Te3 powder composites. ACS Appl Mater Interfaces 2010;2(11):3170–8. 链接1

[11] Bell LE. Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science 2008;321(5895):1457–61. 链接1

[12] Tritt TM, Subramanian MA. Thermoelectric materials, phenomena, and applications: a bird’s eye view. MRS Bull 2006;31(3):188–98. 链接1

[13] Bubnova O, Crispin X. Towards polymer-based organic thermoelectric generators. Energy Environ Sci 2012;5(11):9345–62. 链接1

[14] Zhu Z, Liu C, Jiang F, Xu J, Liu E. Effective treatment methods on PEDOT:PSS to enhance its thermoelectric performance. Synth Met 2017;225:31–40. 链接1

[15] Liu S, Deng H, Zhao Y, Ren S, Fu Q. The optimization of thermoelectric properties in a PEDOT:PSS thin film through post-treatment. RSC Adv 2015;5 (3):1910–7. 链接1

[16] Kim GH, Shao L, Zhang K, Pipe KP. Engineered doping of organic semiconductors for enhanced thermoelectric efficiency. Nat Mater 2013;12 (8):719–23. 链接1

[17] Luo J, Billep D, Waechtler T, Otto TW, Toader M, Gordan OD, et al. Enhancement of the thermoelectric properties of PEDOT:PSS thin films by post-treatment. J Mater Chem A 2013;1(26):7576–83. 链接1

[18] Lee SH, Park H, Kim S, Son W, Cheong IW, Kim JH. Transparent and flexible organic semiconductor nanofilms with enhanced thermoelectric efficiency. J Mater Chem A 2014;2(20):7288–94. 链接1

[19] Fan Z, Li P, Du D, Ouyang J. Significantly enhanced thermoelectric properties of PEDOT:PSS films through sequential post-treatments with common acids and bases. Adv Energy Mater 2017;7(8):1602116. 链接1

[20] Lee JH, Jeong YR, Lee G, Jin SW, Lee YH, Hong SY, et al. Highly conductive, stretchable, and transparent PEDOT:PSS electrodes fabricated with triblock copolymer additives and acid treatment. ACS Appl Mater Interfaces 2018;10 (33):28027–35. 链接1

[21] Ouyang J. Solution-processed PEDOT:PSS films with conductivities as indium tin oxide through a treatment with mild and weak organic acids. ACS Appl Mater Interfaces 2013;5(24):13082–8. 链接1

[22] McCarthy JE, Hanley CA, Brennan LJ, Lambertini VG, Gun’Ko YK. Fabrication of highly transparent and conducting PEDOT:PSS films using a formic acid treatment. J Mater Chem C 2014;2(4):764–70. 链接1

[23] Mengistie DA, Ibrahem MA, Wang PC, Chu CW. Highly conductive PEDOT:PSS treated with formic acid for ITO-free polymer solar cells. ACS Appl Mater Interfaces 2014;6(4):2292–9. 链接1

[24] Sodium hydroxide solution [Internet]. Shanghai: Sigma-Aldrich LLC; c2021 [cited 2020 Aug 31]. Available from: https://www.sigmaaldrich.com/catalog/ product/mm/109137?lang=en®ion=NL. 链接1

[25] Potassium hydroxide solution, 0.1M, Chem-Lab [Internet]. Porto: Thermo Fisher Scientific; c2021 [cited 2020 Aug 31]. Available from: https:// www.fishersci.pt/shop/products/potassium-hydroxide-0-1n-20/11933193. 链接1

[26] Saario T, Tähtinen S. In situ measurement of tee effect of LiOH on the stability of zircaloy-2 surface film in PWR water. In: Proceedings of IAEA Technical Committee Meeting on Influence of Water Chemistry on Fuel Cladding Behaviour; 1993 Oct 4–8; Rez, Czech Republic; 1993.

[27] Saeki A, Koizumi Y, Aida T, Seki S. Comprehensive approach to intrinsic charge carrier mobility in conjugated organic molecules, macromolecules, and supramolecular architectures. Acc Chem Res 2012;45(8):1193–202. 链接1

[28] Lu J, Guo R, Dai W, Huang B. Enhanced in-plane thermoelectric figure of merit in p-type SiGe thin films by nanograin boundaries. Nanoscale 2015;7 (16):7331–9. 链接1

[29] Shi W, Zhao T, Xi J, Wang D, Shuai Z. Unravelling doping effects on PEDOT at the molecular level: from geometry to thermoelectric transport properties. J Am Chem Soc 2015;137(40):12929–38. 链接1

[30] Dong J, Portale G. Role of the processing solvent on the electrical conductivity of PEDOT:PSS. Adv Mater Interfaces 2020;7(18):2000641. 链接1

[31] Bießmann L, Saxena N, Hohn N, Hossain MA, Veinot JGC, Müller-Buschbaum P. Highly conducting, transparent PEDOT:PSS polymer electrodes from post-treatment with weak and strong acids. Adv Electron Mater 2019;5(2):1800654. 链接1

[32] Massonnet N, Carella A, Jaudouin O, Rannou P, Laval G, Celle C, et al. Improvement of the Seebeck coefficient of PEDOT:PSS by chemical reduction combined with a novel method for its transfer using free-standing thin films. J Mater Chem C 2014;2(7):1278–83. 链接1

[33] Khan ZU, Bubnova O, Jafari MJ, Brooke R, Liu X, Gabrielsson R, et al. Acido-basic control of the thermoelectric properties of poly(3,4- ethylenedioxythiophene)tosylate (PEDOT-Tos) thin films. J Mater Chem C Mater 2015;3(40):10616–23. 链接1

[34] Stepien L, Roch A, Schlaier S, Dani I, Kiriy A, Simon F, et al. Investigation of the thermoelectric power factor of KOH-treated PEDOT:PSS dispersions for printing applications. Energy Harvest Syst 2016;3(1):101–11. 链接1

[35] Salamat S, Ahsan M, Arif I. Thermoelectric performance of non-degenerate and degenerate semiconductors. In: Proceedings of 2017 Fifth International Conference on Aerospace Science & Engineering (ICASE); 2017 Nov 14–16; Islamabad, Pakistan; 2018. p. 1–5.

[36] Hu Y, Yang R, Evans DF, Weaver JH. Direct measurements of bipolaron-band development in doped polypyrrole with inverse photoemission. Phys Rev B 1991;44(24):13660–5. 链接1

[37] Zozoulenko I, Singh A, Singh SK, Gueskine V, Crispin X, Berggren M. Polarons, bipolarons, and absorption spectroscopy of PEDOT. ACS Appl Polym Mater 2019;1(1):83–94. 链接1

[38] Xu ZP, Braterman PS. High affinity of dodecylbenzene sulfonate for layered double hydroxide and resulting morphological changes. J Mater Chem 2003;13 (2):268–73. 链接1

[39] Lefebvre M, Qi Z, Rana D, Pickup PG. Chemical synthesis, characterization, and electrochemical studies of poly(3,4-ethylenedioxythiophene)/poly(styrene-4- sulfonate) composites. Chem Mater 1999;11(2):262–8. 链接1

[40] Mitraka E, Jafari MJ, Vagin M, Liu X, Fahlman M, Ederth T, et al. Oxygen-induced doping on reduced PEDOT. J Mater Chem A 2017;5 (9):4404–12. 链接1

[41] Razmjou A, Asadnia M, Hosseini E, Habibnejad Korayem A, Chen V. Design principles of ion selective nanostructured membranes for the extraction of lithium ions. Nat Commun 2019;10:5793. 链接1

[42] Saxena N, Keilhofer J, Maurya AK, Fortunato G, Overbeck J, Müller-Buschbaum P. Facile optimization of thermoelectric properties in PEDOT:PSS thin films through acido-base and redox dedoping using readily available salts. ACS Appl Energy Mater 2018;1(2):336–42. 链接1

[43] Anion exchange resin [Internet]. Amsterdam: Elsevier; c2021 [cited 2020 Aug 31]. Available from: https://www.sciencedirect.com/topics/chemistry/anionexchange-resin. 链接1

[44] Sengupta AK. Ion exchange technology advances in pollution control. Boca Raton: CRC Press; 1995. 链接1

[45] Guan X, Cheng H, Ouyang J. Significant enhancement in the Seebeck coefficient and power factor of thermoelectric polymers by the Soret effect of polyelectrolytes. J Mater Chem A 2018;6(40):19347–52. 链接1

[46] Fan Z, Du D, Guan X, Ouyang J. Polymer films with ultrahigh thermoelectric properties arising from significant Seebeck coefficient enhancement by ion accumulation on surface. Nano Energy 2018;51:481–8. 链接1

[47] Ail U, Jafari MJ, Wang H, Ederth T, Berggren M, Crispin X. Thermoelectric properties of polymeric mixed conductors. Adv Funct Mater 2016;26 (34):6288–96. 链接1

相关研究