期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2021年 第7卷 第5期 doi: 10.1016/j.eng.2021.02.014

用于电动致动器和传感器的离子弹性体

a Materials Science Graduate Program, Kent State University, Kent, OH 44242, USA

b Advanced Materials and Liquid Crystal Institute, Kent State University, Kent, OH 44242, USA

c Department of Physics, Kent State University, Kent, OH 44242, USA

# These authors contributed equally to this work.

收稿日期: 2020-09-11 修回日期: 2020-12-02 录用日期: 2021-02-08 发布日期: 2021-04-18

下一篇 上一篇

摘要

在过去的几十年里,离子导电高分子和弹性体因其在电池、电活性柔性机器人和传感器领域中发挥了自身独特的优势而引起了全世界的关注。研究人员正在研究将具有分散体结构的可拉伸离子弹性体(如离子液体)应用于柔性传感器(如可穿戴设备)中。人们已经对基于离子弹性体的应变、压力和剪切传感器进行了大量的研究,但是到目前为止,此类研究还没有综述文章。本文总结了工业级离子弹性体致动器和传感器的材料和性能。首先,本文综述了三类离子弹性体致动器,即离子聚合物金属复合材料、离子导电聚合物和离子聚合物/碳纳米复合材料,并对未来的致动器进行了展望,如自适应四维(4D)印刷系统和离子液晶弹性体(iLCE)。然后,本文综述了离子弹性体应变和压力传感器的现状,并讨论了用于生物力学和运动行为跟踪的未来可穿戴式应变传感器。最后,本文介绍了基于挠曲电信号的iLCE传感器的初步结果,并将其与有机电化学晶体管集成来达到放大的效果。

图片

图1

图2

图3

图4

图5

图6

图7

图8

图9

图10

图11

图12

图13

图14

参考文献

[ 1 ] Bandodkar AJ, Wang J. Non-invasive wearable electrochemical sensors: a review. Trends Biotechnol 2014;32(7):363–71. 链接1

[ 2 ] Pang C, Lee C, Suh KY. Recent advances in flexible sensors for wearable and implantable devices. J Appl Polym Sci 2013;130(3):1429–41. 链接1

[ 3 ] Amjadi M, Kyung KU, Park I, Sitti M. Stretchable, skin-mountable, and wearable strain sensors and their potential applications: a review. Adv Funct Mater 2016;26(11):1678–98. 链接1

[ 4 ] Trung TQ, Lee NE. Flexible and stretchable physical sensor integrated platforms for wearable human-activity monitoring and personal healthcare. Adv Mater 2016;28(22):4338–72. 链接1

[ 5 ] Majumder S, Mondal T, Deen MJ. Wearable sensors for remote health monitoring. Sensors 2017;17(1):130. 链接1

[ 6 ] Yang T, Xie D, Li Z, Zhu H. Recent advances in wearable tactile sensors: materials, sensing mechanisms, and device performance. Mater Sci Eng Rep 2017;115:1–37. 链接1

[ 7 ] Haddara YM, Howlader MMR. Integration of heterogeneous materials for wearable sensors. Polymers 2018;10(1):60. 链接1

[ 8 ] Heikenfeld J, Jajack A, Rogers J, Gutruf P, Tian L, Pan T, et al. Wearable sensors: modalities, challenges, and prospects. Lab Chip 2018;18(2):217–48. 链接1

[ 9 ] Liu Y, Wang H, Zhao W, Zhang M, Qin H, Xie Y. Flexible, stretchable sensors for wearable health monitoring: sensing mechanisms, materials, fabrication strategies and features. Sensors 2018;18(2):645. 链接1

[10] Lim HR, Kim HS, Qazi R, Kwon YT, Jeong JW, Yeo WH. Advanced soft materials, sensor integrations, and applications of wearable flexible hybrid electronics in healthcare, energy, and environment. Adv Mater 2020;32(15):1901924. 链接1

[11] Bar-Cohen Y, editor. Electroactive polymer (EAP) actuators as artificial muscles: reality, potential, and challenges. Washington, DC: SPIE Press; 2004. 链接1

[12] Kim KJ, Tadokoro S. Electroactive polymers for robotic applications: artificial muscles and sensors. London: Springer; 2007. 链接1

[13] Sugawara E, Nikaido H. Properties of AdeABC and AdeIJK efflux systems of Acinetobacter baumannii compared with those of the AcrAB-TolC system of Escherichia coli. Antimicrob Agents Chemother 2014;58(12):7250–7. 链接1

[14] Kim O, Shin TJ, Park MJ. Fast low-voltage electroactive actuators using nanostructured polymer electrolytes. Nat Commun 2013;4(1):2208. 链接1

[15] Kim O, Kim SJ, Park MJ. Low-voltage-driven soft actuators. Chem Commun 2018;54(39):4895–904. 链接1

[16] Kim O, Kim H, Choi UH, Park MJ. One-volt-driven superfast polymer actuators based on single-ion conductors. Nat Commun 2016;7(1):13576. 链接1

[17] Kim SJ, Kim O, Park MJ. True low-power self-locking soft actuators. Adv Mater 2018;30(12):1706547. 链接1

[18] Hu W, Zhao H, Song L, Yang Z, Cao H, Cheng Z, et al. Electrically controllable selective reflection of chiral nematic liquid crystal/chiral ionic liquid composites. Adv Mater 2010;22(4):468–72. 链接1

[19] Wang M, Zou C, Sun J, Zhang L, Wang L, Xiao J, et al. Asymmetric tunable photonic bandgaps in self-organized 3D nanostructure of polymer-stabilized blue phase I modulated by voltage polarity. Adv Funct Mater 2017;27 (46):1702261. 链接1

[20] Hirai T. Magnetic fluid composite gels. In: Asaka K, Okuzaki H, editors. Soft actuators: materials, modeling, applications, and future perspectives. Singapore: Springer Singapore; 2019. p. 347–62. 链接1

[21] Shahsavan H, Salili SM, Jákli A, Zhao B. Thermally active liquid crystal network gripper mimicking the self-peeling of gecko toe pads. Adv Mater 2017;29(3):1604021. 链接1

[22] Wang L, Jian Y, Le X, Lu W, Ma C, Zhang J, et al. Actuating and memorizing bilayer hydrogels for a self-deformed shape memory function. Chem Commun 2018;54(10):1229–32. 链接1

[23] Zhang L, Desta I, Naumov P. Synergistic action of thermoresponsive and hygroresponsive elements elicits rapid and directional response of a bilayer actuator. Chem Commun 2016;52(35):5920–3. 链接1

[24] Ilievski F, Mazzeo AD, Shepherd RF, Chen X, Whitesides GM. Soft robotics for chemists. Angew Chem Int Ed Engl 2011;50(8):1890–5. 链接1

[25] Moseley P, Florez JM, Sonar HA, Agarwal G, Curtin W, Paik J. Modeling, design, and development of soft pneumatic actuators with finite element method. Adv Eng Mater 2016;18(6):978–88. 链接1

[26] Zarzar LD, Kim P, Aizenberg J. Bio-inspired design of submerged hydrogelactuated polymer microstructures operating in response to pH. Adv Mater 2011;23(12):1442–6. 链接1

[27] Yu C, Yuan P, Erickson EM, Daly CM, Rogers JA, Nuzzo RG. Oxygen reduction reaction induced pH-responsive chemo-mechanical hydrogel actuators. Soft Matter 2015;11(40):7953–9. 链接1

[28] Yoshino T, Kondo M, Mamiya J, Kinoshita M, Yu Y, Ikeda T. Three-dimensional photomobility of crosslinked azobenzene liquid-crystalline polymer fibers. Adv Mater 2010;22(12):1361–3. 链接1

[29] Han DD, Zhang YL, Ma JN, Liu YQ, Han B, Sun HB. Light-mediated manufacture and manipulation of actuators. Adv Mater 2016;28(38):8328–43. 链接1

[30] Wang L, Urbas AM, Li Q. Nature-inspired emerging chiral liquid crystal nanostructures: from molecular self-assembly to DNA mesophase and nanocolloids. Adv Mater 2020;32(41):1801335. 链接1

[31] Wang M, Zou C, Li C, Sun J, Wang L, Hu W, et al. Bias-polarity dependent bidirectional modulation of photonic bandgap in a nanoengineered 3D blue phase polymer scaffold for tunable laser application. Adv Opt Mater 2018;6 (16):1800409. 链接1

[32] Wang L, Bisoyi HK, Zheng Z, Gutierrez-Cuevas KG, Singh G, Kumar S, et al. Stimuli-directed self-organized chiral superstructures for adaptive windows enabled by mesogen-functionalized graphene. Mater Today 2017;20 (5):230–7. 链接1

[33] Ikeda T, Mamiya J, Yu Y. Photomechanics of liquid-crystalline elastomers and other polymers. Angew Chem Int Ed Engl 2007;46(4):506–28. 链接1

[34] Li MH, Keller P. Artificial muscles based on liquid crystal elastomers. Philos Trans A 1847;2006(364):2763–77. 链接1

[35] Jákli A. Electro-mechanical effects in liquid crystals. Liq Cryst 2010;37(6– 7):825–37. 链接1

[36] Pelrine R, Kornbluh R, Joseph J, Heydt R, Pei Q, Chiba S. High-field deformation of elastomeric dielectrics for actuators. Mater Sci Eng C 2000;11(2):89–100. 链接1

[37] Romasanta LJ, Lopez-Manchado MA, Verdejo R. Increasing the performance of dielectric elastomer actuators: a review from the materials perspective. Prog Polym Sci 2015;51:188–211. 链接1

[38] Zhang QM, Bharti V, Zhao X. Giant electrostriction and relaxor ferroelectric behavior in electron-irradiated poly(vinylidene fluoride-trifluoroethylene) copolymer. Science 1998;280(5372):2101–4. 链接1

[39] Ohm C, Brehmer M, Zentel R. Liquid crystalline elastomers as actuators and sensors. Adv Mater 2010;22(31):3366–87. 链接1

[40] White TJ, Broer DJ. Programmable and adaptive mechanics with liquid crystal polymer networks and elastomers. Nat Mater 2015;14(11):1087–98. 链接1

[41] Mirfakhrai T, Madden JDW, Baughman RH. Polymer artificial muscles. Mater Today 2007;10(4):30–8. 链接1

[42] Hines L, Petersen K, Lum GZ, Sitti M. Soft actuators for small-scale robotics. Adv Mater 2017;29(13):1603483. 链接1

[43] Lehmann W, Skupin H, Tolksdorf C, Gebhard E, Zentel R, Krüger P, et al. Giant lateral electrostriction in ferroelectric liquid-crystalline elastomers. Nature 2001;410(6827):447–50. 链接1

[44] Bar-Cohen Y, Zhang Q. Electroactive polymer actuators and sensors. MRS Bull 2008;33(3):173–81. 链接1

[45] Yoon SG, Koo HJ, Chang ST. Highly stretchable and transparent microfluidic strain sensors for monitoring human body motions. ACS Appl Mater Interfaces 2015;7(49):27562–70. 链接1

[46] Chossat JB, Park YL, Wood RJ, Duchaine V. A soft strain sensor based on ionic and metal liquids. IEEE Sens J 2013;13(9):3405–14. 链接1

[47] Choi DY, Kim MH, Oh YS, Jung SH, Jung JH, Sung HJ, et al. Highly stretchable, hysteresis-free ionic liquid-based strain sensor for precise human motion monitoring. ACS Appl Mater Interfaces 2017;9(2):1770–80. 链接1

[48] Zhang SH, Wang FX, Li JJ, Peng HD, Yan JH, Pan GB. Wearable wide-range strain sensors based on ionic liquids and monitoring of human activities. Sensors 2017;17(11):2621. 链接1

[49] Wang H, Wang Z, Yang J, Xu C, Zhang Q, Peng Z. Ionic gels and their applications in stretchable electronics. Macromol Rapid Commun 2018;39 (16):1800246. 链接1

[50] Yang C, Suo Z. Hydrogel ionotronics. Nat Rev Mater 2018;3(6):125–42. 链接1

[51] Gu G, Xu H, Peng S, Li L, Chen S, Lu T, et al. Integrated soft ionotronic skin with stretchable and transparent hydrogel–elastomer ionic sensors for handmotion monitoring. Soft Robot 2019;6(3):368–76. 链接1

[52] Keulemans G, Pelgrims P, Bakula M, Ceyssens F, Puers R. An ionic liquid based strain sensor for large displacements. Procedia Eng 2014;87:1123–6. 链接1

[53] Antony P, De SK. Ionic thermoplastic elastomers: a review. J Macromol Sci Part C 2001;41(1–2):41–77. 链接1

[54] Soares BG. Ionic liquid: a smart approach for developing conducting polymer composites: a review. J Mol Liq 2018;262:8–18. 链接1

[55] Rajapaksha CPH, Feng C, Piedrahita C, Cao J, Kaphle V, Lüssem B, et al. Poly(ethylene glycol) diacrylate based electro-active ionic elastomer. Macromol Rapid Commun 2020;41(6):1900636. 链接1

[56] Feng C, Kyu T. Role of dinitrile plasticizer chain lengths in electrochemical performance of highly conductive polymer electrolyte membrane for lithium ion battery. Electrochim Acta 2020;330:135320. 链接1

[57] Hao M, Wang Y, Zhu Z, He Q, Zhu D, Luo M. A compact review of IPMC as soft actuator and sensor: current trends, challenges, and potential solutions from our recent work. Front Robot AI 2019;6:129. 链接1

[58] Anderson IA, Gisby TA, McKay TG, O’Brien BM, Calius EP. Multi-functional dielectric elastomer artificial muscles for soft and smart machines. J Appl Phys 2012;112(4):041101. 链接1

[59] Kurumaya S, Suzumori K, Nabae H, Wakimoto S. Musculoskeletal lower-limb robot driven by multifilament muscles. Robomech J 2016;3(1):18. 链接1

[60] Polygerinos P, Wang Z, Galloway KC, Wood RJ, Walsh CJ. Soft robotic glove for combined assistance and at-home rehabilitation. Rob Auton Syst 2015;73:135–43. 链接1

[61] Bauer S, Bauer-Gogonea S, Graz I, Kaltenbrunner M, Keplinger C, Schwödiauer R. 25th anniversary article: a soft future: from robots and sensor skin to energy harvesters. Adv Mater 2014;26(1):149–61. 链接1

[62] Kim S, Laschi C, Trimmer B. Soft robotics: a bioinspired evolution in robotics. Trends Biotechnol 2013;31(5):287–94. 链接1

[63] Wei D, Ivaska A. Applications of ionic liquids in electrochemical sensors. Anal Chim Acta 2008;607(2):126–35. 链接1

[64] Silvester DS. Recent advances in the use of ionic liquids for electrochemical sensing. Analyst 2011;136(23):4871–82. 链接1

[65] Ma Y, Pharr M, Wang L, Kim J, Liu Y, Xue Y, et al. Soft elastomers with ionic liquid-filled cavities as strain isolating substrates for wearable electronics. Small 2017;13(9):1602954. 链接1

[66] Singh VV, Nigam AK, Batra A, Boopathi M, Singh B, Vijayaraghavan R. Applications of ionic liquids in electrochemical sensors and biosensors. Int J Electrochem 2012;2012:165683. 链接1

[67] Dossi N, Toniolo R, Pizzariello A, Carrilho E, Piccin E, Battiston S, et al. An electrochemical gas sensor based on paper supported room temperature ionic liquids. Lab Chip 2012;12(1):153–8. 链接1

[68] Tamilarasan P, Ramaprabhu S. Graphene based all-solid-state supercapacitors with ionic liquid incorporated polyacrylonitrile electrolyte. Energy 2013;51:374–81. 链接1

[69] Ayalneh Tiruye G, Muñoz-Torrero D, Palma J, Anderson M, Marcilla R. Allsolid state supercapacitors operating at 3.5 V by using ionic liquid based polymer electrolytes. J Power Sources 2015;279:472–80. 链接1

[70] Piedrahita CR, Yue P, Cao J, Lee H, Rajapaksha CP, Feng C, et al. Flexoelectricity in flexoionic polymer electrolyte membranes: effect of thiosiloxane modification on poly(ethylene glycol) diacrylate and ionic liquid electrolyte composites. ACS Appl Mater Interfaces 2020;12(14):16978–86. 链接1

[71] Cao J, Piedrahita C, Kyu T. Mechanoelectrical conversion in highly ionic conductive solid-state polymer electrolyte membranes. Macromol Mater Eng 2019;304(5):1800777. 链接1

[72] Liu Y, Lu C, Twigg S, Ghaffari M, Lin J, Winograd N, et al. Direct observation of ion distributions near electrodes in ionic polymer actuators containing ionic liquids. Sci Rep 2013;3(1):973. 链接1

[73] Feng C, Rajapaksha CPH, Cedillo JM, Piedrahita C, Cao J, Kaphle V, et al. Electroresponsive ionic liquid crystal elastomers. Macromol Rapid Commun 2019;40(19):1900299. 链接1

[74] Carmichael AJ, Hardacre C, Holbrey JD, Seddon KR, Nieuwenhuyzen M. Structure and bonding in ionic liquids. In: Trulove PC, de Long HC, Stafford GR, Deki S, editors. Molten salts XII: proceedings of the international symposium. Pennington: The Electrochemical Society; 2000. p. 209–21.

[75] Hagiwara R, Ito Y. Room temperature ionic liquids of alkylimidazolium cations and fluoroanions. J Fluor Chem 2000;105(2):221–7. 链接1

[76] Liu C, Huang N, Xu F, Tong J, Chen Z, Gui X, et al. 3D printing technologies for flexible tactile sensors toward wearable electronics and electronic skin. Polymers 2018;10(6):629. 链接1

[77] Li R, Chen G, He M, Tian J, Su B. Patternable transparent and conductive elastomers towards flexible tactile/strain sensors. J Mater Chem C 2017;5 (33):8475–81. 链接1

[78] Tian K, Bae J, Bakarich SE, Yang C, Gately RD, Spinks GM, et al. 3D printing of transparent and conductive heterogeneous hydrogel–elastomer systems. Adv Mater 2017;29(10):1604827. 链接1

[79] Ha M, Lim S, Ko H. Wearable and flexible sensors for user-interactive healthmonitoring devices. J Mater Chem B 2018;6(24):4043–64. 链接1

[80] Jayathilaka WADM, Qi K, Qin Y, Chinnappan A, Serrano-García W, Baskar C, et al. Significance of nanomaterials in wearables: a review on wearable actuators and sensors. Adv Mater 2019;31(7):1805921. 链接1

[81] Peng Y, Zhao L, Yang C, Yang Y, Song C, Wu Q, et al. Super tough and strong self-healing elastomers based on polyampholytes. J Mater Chem A 2018;6 (39):19066–74. 链接1

[82] Darabi MA, Khosrozadeh A, Mbeleck R, Liu Y, Chang Q, Jiang J, et al. Skininspired multifunctional autonomic-intrinsic conductive self-healing hydrogels with pressure sensitivity, stretchability, and 3D printability. Adv Mater 2017;29(31):1700533. 链接1

[83] Luo F, Sun TL, Nakajima T, Kurokawa T, Zhao Y, Ihsan AB, et al. Crack blunting and advancing behaviors of tough and self-healing polyampholyte hydrogel. Macromolecules 2014;47(17):6037–46. 链接1

[84] Xu K, Lu Y, Takei K. Multifunctional skin-inspired flexible sensor systems for wearable electronics. Adv Mater Technol 2019;4(3):1800628. 链接1

[85] Daemi H, Rajabi-Zeleti S, Sardon H, Barikani M, Khademhosseini A, Baharvand H. A robust super-tough biodegradable elastomer engineered by supramolecular ionic interactions. Biomaterials 2016;84:54–63. 链接1

[86] Vatani M, Vatani M, Choi JW. Multi-layer stretchable pressure sensors using ionic liquids and carbon nanotubes. Appl Phys Lett 2016;108(6):061908. Erratum in: Appl Phys Lett 2016;108(16):169902

[87] Jia H, He Y, Zhang X, Du W, Wang Y. Integrating ultra-thermal-sensitive fluids into elastomers for multifunctional flexible sensors. Adv Electron Mater 2015;1(3):1500029. 链接1

[88] Amoli V, Kim JS, Jee E, Chung YS, Kim SY, Koo J, et al. A bioinspired hydrogen bond-triggered ultrasensitive ionic mechanoreceptor skin. Nat Commun 2019;10(1):4019. 链接1

[89] Nie B, Li R, Brandt JD, Pan T. Iontronic microdroplet array for flexible ultrasensitive tactile sensing. Lab Chip 2014;14(6):1107–16. 链接1

[90] Choi D, Jang S, Kim JS, Kim HJ, Kim DH, Kwon JY. A highly sensitive tactile sensor using a pyramid-plug structure for detecting pressure, shear force, and torsion. Adv Mater Technol 2019;4(3):1800284. 链接1

[91] Sun JY, Keplinger C, Whitesides GM, Suo Z. Ionic skin. Adv Mater 2014;26 (45):7608–14. 链接1

[92] Yang JC, Mun J, Kwon SY, Park S, Bao Z, Park S. Electronic skin: recent progress and future prospects for skin-attachable devices for health monitoring, robotics, and prosthetics. Adv Mater 2019;31(48):1904765. 链接1

[93] Wang T, Farajollahi M, Choi YS, Lin IT, Marshall JE, Thompson NM, et al. Electroactive polymers for sensing. Interface. Focus 2016;6(4):20160026. 链接1

[94] Amoli V, Kim JS, Kim SY, Koo J, Chung YS, Choi H, et al. Ionic tactile sensors for emerging human-interactive technologies: a review of recent progress. Adv Funct Mater 2020;30(20):1904532. 链接1

[95] Pei Q, Inganäs O. Electrochemical applications of the bending beam method. 1. Mass transport and volume changes in polypyrrole during redox. J Phys Chem 1992;96(25):10507–14. 链接1

[96] Sugino T, Kiyohara K, Takeuchi I, Mukai K, Asaka K. Actuator properties of the complexes composed by carbon nanotube and ionic liquid: the effects of additives. Sens Actuators B 2009;141(1):179–86. 链接1

[97] Tanaka T, Nishio I, Sun ST, Ueno-Nishio S. Collapse of gels in an electric field. Science 1982;218(4571):467–9. 链接1

[98] Shahinpoor M. Ionic polymer–conductor composites as biomimetic sensors, robotic actuators and artificial muscles—a review. Electrochim Acta 2003;48 (14–16):2343–53. 链接1

[99] Choi P, Jalani NH, Datta R. Thermodynamics and proton transport in Nafion: II. Proton diffusion mechanisms and conductivity. J Electrochem Soc 2005;152(3):E123. 链接1

[100] Saccardo MC, Zuquello AG, Tozzi KA, Gonçalves R, Hirano LA, Scuracchio CH. Counter-ion and humidity effects on electromechanical properties of Nafion®/Pt composites. Mater Chem Phys 2020;244:122674. 链接1

[101] Lee JW, Yu S, Hong SM, Koo CM. High-strain air-working soft transducers produced from nanostructured block copolymer ionomer/silicate/ionic liquid nanocomposite membranes. J Mater Chem C 2013;1(24):3784–93. 链接1

[102] Yan Y, Santaniello T, Bettini LG, Minnai C, Bellacicca A, Porotti R, et al. Electroactive ionic soft actuators with monolithically integrated gold nanocomposite electrodes. Adv Mater 2017;29(23):1606109. 链接1

[103] Monobe H, Tsuchiya N, Yamamura M, Mukai K, Sugino T, Asaka K. Actuation and blocking force of carbon nanotube/polymer actuator with plateletshaped graphene. Jpn J Appl Phys 2020;59(SD):SDDF08. 链接1

[104] Akle BJ, Bennett MD, Leo DJ. High-strain ionomeric–ionic liquid electroactive actuators. Sens Actuators A Phys 2006;126(1):173–81. 链接1

[105] Bennett MD, Leo DJ. Ionic liquids as stable solvents for ionic polymer transducers. Sens Actuators A Phys 2004;115(1):79–90. 链接1

[106] Wang J, Xu C, Taya M, Kuga Y. A Flemion-based actuator with ionic liquid as solvent. Smart Mater Struct 2007;16(2):S214–9. 链接1

[107] Kim J, Park M, Kim S, Jeon M. Effect of ionic polymer membrane with multiwalled carbon nanotubes on the mechanical performance of ionic electroactive polymer actuators. Polymers 2020;12(2):396. 链接1

[108] Yip J, Ding F, Yick KL, Yuen CWM, Lee TT, Choy WH. Tunable carbon nanotube ionic polymer actuators that are operable in dry conditions. Sens Actuators B Chem 2012;162(1):76–81. 链接1

[109] Nguyen VK, Yoo Y. A novel design and fabrication of multilayered ionic polymer–metal composite actuators based on Nafion/layered silicate and Nafion/silica nanocomposites. Sens Actuators B Chem 2007;123(1): 183–90. 链接1

[110] Lee JW, Hong SM, Kim J, Koo CM. Novel sulfonated styrenic pentablock copolymer/silicate nanocomposite membranes with controlled ion channels and their IPMC transducers. Sens Actuators B Chem 2012;162(1):369–76. 链接1

[111] Shen C, Zhao Q, Evans CM. Precise network polymerized ionic liquids for lowvoltage, dopant-free soft actuators. Adv Mater Technol 2019;4(2):1800535. 链接1

[112] Kokubo H, Sano R, Murai K, Ishii S, Watanabe M. Ionic polymer actuators using poly(ionic liquid) electrolytes. Eur Polym J 2018;106:266–72. 链接1

[113] Cowan MG, Lopez AM, Masuda M, Kohno Y, McDanel WM, Noble RD, et al. Imidazolium-based poly(ionic liquid)/ionic liquid ion-gels with high ionic conductivity prepared from a curable poly(ionic liquid). Macromol Rapid Commun 2016;37(14):1150–4. 链接1

[114] Wang F, Jeon JH, Park S, Kee CD, Kim SJ, Oh IK. A soft biomolecule actuator based on a highly functionalized bacterial cellulose nano-fiber network with carboxylic acid groups. Soft Matter 2016;12(1):246–54. 链接1

[115] Li J, Ma W, Song L, Niu Z, Cai L, Zeng Q, et al. Superfast-response and ultrahigh-power-density electromechanical actuators based on hierarchal carbon nanotube electrodes and chitosan. Nano Lett 2011;11(11):4636–41. 链接1

[116] Plesse C, Vidal F, Teyssié D, Chevrot C. Conducting polymer artificial muscle fibres: toward an open air linear actuation. Chem Commun 2010;46 (17):2910–2. 链接1

[117] Hu F, Xue Y, Xu J, Lu B. PEDOT-based conducting polymer actuators. Front Robot AI 2019;6:114. 链接1

[118] Kim KJ, Shahinpoor M. A novel method of manufacturing three-dimensional ionic polymer–metal composites (IPMCs) biomimetic sensors, actuators and artificial muscles. Polymer 2002;43(3):797–802. 链接1

[119] Shahinpoor M, Kim KJ. Ionic polymer–metal composites: I. fundamentals. Smart Mater Struct 2001;10(4):819–33. 链接1

[120] Nemat-Nasser S. Micromechanics of actuation of ionic polymer–metal composites. J Appl Phys 2002;92(5):2899–915. 链接1

[121] Wiles KB, Akle BJ, Hickner MA, Bennett M, Leo DJ, McGrath JE. Directly copolymerized poly(arylene sulfide sulfone) and poly(arylene ether sulfone) disulfonated copolymers for use in ionic polymer transducers. J Electrochem Soc 2007;154(6):P77. 链接1

[122] Nemat-Nasser S, Wu Y. Comparative experimental study of ionic polymer– metal composites with different backbone ionomers and in various cation forms. J Appl Phys 2003;93(9):5255–67. 链接1

[123] Phillips AK, Moore RB. Ionic actuators based on novel sulfonated ethylene vinyl alcohol copolymer membranes. Polymer 2005;46(18):7788–802. 链接1

[124] Duncan AJ, Leo DJ, Long TE. Beyond Nafion: charged macromolecules tailored for performance as ionic polymer transducers. Macromolecules 2008;41 (21):7765–75. 链接1

[125] Verbrugge MW, Hill RF. Analysis of promising perfluorosulfonic acid membranes for fuel-cell electrolytes. J Electrochem Soc 1990;137 (12):3770–7. 链接1

[126] Wang Y, Chen H, Wang Y, Zhu Z, Li D. Effect of dehydration on the mechanical and physicochemical properties of gold- and palladium-ionomeric polymer– metal composite (IPMC) actuators. Electrochim Acta 2014;129:450–8. 链接1

[127] Barramba J, Silva J, Costa Branco PJ. Evaluation of dielectric gel coating for encapsulation of ionic polymer–metal composite (IPMC) actuators. Sens Actuators A Phys 2007;140(2):232–8. 链接1

[128] Takeuchi I, Asaka K, Kiyohara K, Sugino T, Terasawa N, Mukai K, et al. Electromechanical behavior of fully plastic actuators based on bucky gel containing various internal ionic liquids. Electrochim Acta 2009;54 (6):1762–8. 链接1

[129] Wang XL, Oh IK, Lu J, Ju J, Lee S. Biomimetic electro-active polymer based on sulfonated poly (styrene-b-ethylene-co-butylene-b-styrene). Mater Lett 2007;61(29):5117–20. 链接1

[130] Green MD, Wang D, Hemp ST, Choi JH, Winey KI, Heflin JR, et al. Synthesis of imidazolium ABA triblock copolymers for electromechanical transducers. Polymer 2012;53(17):3677–86. 链接1

[131] Park JH, Han MJ, Song DS, Jho JY. Ionic polymer–metal composite actuators obtained from radiation-grafted cation- and anion-exchange membranes. ACS Appl Mater Interfaces 2014;6(24):22847–54. 链接1

[132] Shahinpoor M. Fundamentals of ionic polymer metal composites (IPMCs). In: Shahinpoor M, editor. Ionic polymer metal composites (IPMCs): smart multifunctional materials and artificial muscles. London: Royal Society of Chemistry; 2016. p. 1–60. 链接1

[133] Takenaka H, Torikai E, Kawami Y, Wakabayashi N. Solid polymer electrolyte water electrolysis. Int J Hydrogen Energy 1982;7(5):397–403. 链接1

[134] Nakabo Y, Mukai T, Asaka K. Biomimetic soft robots using IPMC. In: Kim KJ, Tadokoro S, editors. Electroactive polymers for robotic applications. London: Springer; 2007. p. 165–98. 链接1

[135] Tiwari R, Garcia E. The state of understanding of ionic polymer metal composite architecture: a review. Smart Mater Struct 2011;20(8):083001. 链接1

[136] Shahinpoor M, Kim KJ. Ionic polymer–metal composites: IV. industrial and medical applications. Smart Mater Struct 2004;14(1):197–214. 链接1

[137] Akle BJ, Leo DJ, Hickner MA, McGrath JE. Correlation of capacitance and actuation in ionomeric polymer transducers. J Mater Sci 2005;40 (14):3715–24. 链接1

[138] Chung CK, Fung PK, Hong YZ, Ju MS, Lin CCK, Wu TC. A novel fabrication of ionic polymer–metal composites (IPMC) actuator with silver nano-powders. Sens Actuators B Chem 2006;117(2):367–75. 链接1

[139] Tiwari R, Kim KJ. Disc-shaped ionic polymer metal composites for use in mechano-electrical applications. Smart Mater Struct 2010;19(6):065016. 链接1

[140] Jin N, Wang B, Bian K, Chen Q, Xiong K. Performance of ionic polymer–metal composite (IPMC) with different surface roughening methods. Front Mech Eng China 2009;4(4):430–5. 链接1

[141] Noh TG, Tak Y, Nam JD, Choi H. Electrochemical characterization of polymer actuator with large interfacial area. Electrochim Acta 2002;47(13– 14):2341–6. 链接1

[142] Taccola S, Bellacicca A, Milani P, Beccai L, Greco F. Low-voltage dielectric elastomer actuators with stretchable electrodes fabricated by supersonic cluster beam implantation. J Appl Phys 2018;124(6):064901. 链接1

[143] Abdullayev E, Lvov Y. Halloysite clay nanotubes as a ceramic ‘‘skeleton” for functional biopolymer composites with sustained drug release. J Mater Chem B 2013;1(23):2894–903. 链接1

[144] Kim HI, Kim DK, Han JH. Study of flapping actuator modules using IPMC. In: Proceedings of the SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring; 2007 Mar 18–22; San Diego, CA, USA; 2007.

[145] Lee SG, Park HC, Pandita SD, Yoo YT. Performance improvement of IPMC (ionic polymer metal composites) for a flapping actuator. Int J Control Autom Syst 2006;4(6):748–55. 链接1

[146] Suzumori K, Nabae H, Asaka K, Horiuchi T. Applying IPMC to soft robots. In: Bar-Cohen Y, Anderson IA, Shea HR, editors. Proceedings volume 11375, Electroactive Polymer Actuators and Devices (EAPAD) XXII; 2020 Apr 27– May 9; online conference. Bellingham: SPIE; 2020. p. 113750A. 链接1

[147] Chen S, Cao Y, Sarparast M, Yuan H, Dong L, Tan X, et al. Soft crawling robots: design, actuation, and locomotion. Adv Mater Technol 2020;5(2):1900837. 链接1

[148] Shen Q, Wang T, Kim KJ. A biomimetic underwater vehicle actuated by waves with ionic polymer–metal composite soft sensors. Bioinspir Biomim 2015;10 (5):055007. 链接1

[149] Chen Z. A review on robotic fish enabled by ionic polymer–metal composite artificial muscles. Robotics Biomim 2017;4(1):24. 链接1

[150] Bar-Cohen Y. Electroactive polymers: current capabilities and challenges. In: Proceedings of the SPIE’s 9th Annual International Symposium on Smart Structures and Materials; 2002 Mar 17–21; San Diego, CA, USA; 2002.

[151] Okuzaki H, Kuwabara T, Funasaka K, Saido T. Humidity-sensitive polypyrrole films for electro-active polymer actuators. Adv Funct Mater 2013;23 (36):4400–7. 链接1

[152] Sansiñena JM, Gao J, Wang HL. High-performance, monolithic polyaniline electrochemical actuators. Adv Funct Mater 2003;13(9):703–9. 链接1

[153] Kim J, Yun SR, Deshpande SD. Synthesis, characterization and actuation behavior of polyaniline-coated electroactive paper actuators. Polym Int 2007;56(12):1530–6. 链接1

[154] Kotal M, Kim J, Kim KJ, Oh IK. Sulfur and nitrogen Co-doped graphene electrodes for high-performance ionic artificial muscles. Adv Mater 2016;28 (8):1610–5. 链接1

[155] Wang D, Lu C, Zhao J, Han S, Wu M, Chen W. High energy conversion efficiency conducting polymer actuators based on PEDOT:PSS/MWCNTs composite electrode. RSC Adv 2017;7(50):31264–71. 链接1

[156] Skotheim TA, Reynolds JR. Handbook of conducting polymers. 3rd ed. Boca Raton: CRC Press; 2007. 链接1

[157] Moliton A, Hiorns RC. Review of electronic and optical properties of semiconducting p-conjugated polymers: applications in optoelectronics. Polym Int 2004;53(10):1397–412. 链接1

[158] Lund A, Darabi S, Hultmark S, Ryan JD, Andersson B, Ström A, et al. Roll-to-roll dyed conducting silk yarns: a versatile material for e-textile devices. Adv Mater Technol 2018;3(12):1800251. 链接1

[159] Põldsalu I, Rohtlaid K, Nguyen TMG, Plesse C, Vidal F, Khorram MS, et al. Thin ink-jet printed trilayer actuators composed of PEDOT:PSS on interpenetrating polymer networks. Sens Actuators B Chem 2018;258:1072–9. 链接1

[160] Zolfagharian A, Kouzani AZ, Khoo SY, Moghadam AAA, Gibson I, Kaynak A. Evolution of 3D printed soft actuators. Sens Actuators A Phys 2016;250:258–72. 链接1

[161] Shalu S, Singh VK, Singh RK. Development of ion conducting polymer gel electrolyte membranes based on polymer PVdF-HFP, BMIMTFSI ionic liquid and the Li-salt with improved electrical, thermal and structural properties. J Mater Chem C 2015;3(28):7305–18. 链接1

[162] Zhou D, Spinks GM, Wallace GG, Tiyapiboonchaiya C, MacFarlane DR, Forsyth M, et al. Solid state actuators based on polypyrrole and polymer-in-ionic liquid electrolytes. Electrochim Acta 2003;48(14–16):2355–9. 链接1

[163] Park M, Kim J, Song H, Kim S, Jeon M. Fast and stable ionic electroactive polymer actuators with PEDOT:PSS/graphene–Ag-nanowires) nanocomposite electrodes. Sensors 2018;18(9):3126. 链接1

[164] Melling D, Martinez JG, Jager EWH. Conjugated polymer actuators and devices: progress and opportunities. Adv Mater 2019;31(22):1808210. 链接1

[165] Cheedarala RK, Jeon JH, Kee CD, Oh IK. Bio-inspired all-organic soft actuator based on a p–p stacked 3D ionic network membrane and ultra-fast solution processing. Adv Funct Mater 2014;24(38):6005–15. 链接1

[166] Vidal F, Plesse C, Teyssié D, Chevrot C. Long-life air working conducting semiIPN/ionic liquid based actuator. Synth Met 2004;142(1–3):287–91. 链接1

[167] Festin N, Maziz A, Plesse C, Teyssié D, Chevrot C, Vidal F. Robust solid polymer electrolyte for conducting IPN actuators. Smart Mater Struct 2013;22 (10):104005. 链接1

[168] Woehling V, Nguyen GTM, Plesse C, Cantin S, Madden JDW, Vidal F. Interpenetrating polymer network (IPN) as tool for tuning electromechanical properties of electrochemical actuator operating in open-air. Sens Actuators B Chem 2018;256:294–303. 链接1

[169] Woehling V, Nguyen GTM, Plesse C, Farajollahi M, Madden JDW, Vidal F. Toward electroactive catheter design using conducting interpenetrating polymer networks actuators. In: Bar-Cohen Y, editor. Proceedings volume 10594, Electroactive Polymer Actuators and Devices (EAPAD) XX; 2018 Mar 4–8; Denver, CO, USA. Bellingham: SPIE; 2018. p. 1059415. 链接1

[170] Farajollahi M, Woehling V, Plesse C, Nguyen GTM, Vidal F, Sassani F, et al. Self-contained tubular bending actuator driven by conducting polymers. Sens Actuators A Phys 2016;249:45–56. 链接1

[171] Maziz A, Concas A, Khaldi A, Stålhand J, Persson NK, Jager EWH. Knitting and weaving artificial muscles. Sci Adv 2017;3(1):e1600327. 链接1

[172] Maziz A, Plesse C, Soyer C, Chevrot C, Teyssié D, Cattan E, et al. Demonstrating kHz frequency actuation for conducting polymer microactuators. Adv Funct Mater 2014;24(30):4851–9. 链接1

[173] Kim SS, Jeon JH, Kee CD, Oh IK. Electro-active hybrid actuators based on freeze-dried bacterial cellulose and PEDOT:PSS. Smart Mater Struct 2013;22 (8):085026. 链接1

[174] Khan A, Abas Z, Kim HS, Kim J. Recent progress on cellulose-based electroactive paper, its hybrid nanocomposites and applications. Sensors 2016;16 (8):1172. 链接1

[175] Mirvakili SM, Hunter IW. Artificial muscles: mechanisms, applications, and challenges. Adv Mater 2018;30(6):1704407. 链接1

[176] Taccola S, Greco F, Sinibaldi E, Mondini A, Mazzolai B, Mattoli V. Toward a new generation of electrically controllable hygromorphic soft actuators. Adv Mater 2015;27(10):1668–75. 链接1

[177] Liu S, Liu Y, Cebeci H, de Villoria RG, Lin JH, Wardle BL, et al. High electromechanical response of ionic polymer actuators with controlledmorphology aligned carbon nanotube/Nafion nanocomposite electrodes. Adv Funct Mater 2010;20(19):3266–71. 链接1

[178] Kim J, Jeon JH, Kim HJ, Lim H, Oh IK. Durable and water-floatable ionic polymer actuator with hydrophobic and asymmetrically laser-scribed reduced graphene oxide paper electrodes. ACS Nano 2014;8(3):2986–97. 链接1

[179] Xie X, Qu L, Zhou C, Li Y, Zhu J, Bai H, et al. An asymmetrically surfacemodified graphene film electrochemical actuator. ACS Nano 2010;4 (10):6050–4. 链接1

[180] Wang H, Liu B, Wang L, Chen X, Chen Z, Qi Y, et al. Graphene glass inducing multidomain orientations in cholesteric liquid crystal devices toward wide viewing angles. ACS Nano 2018;12(7):6443–51. 链接1

[181] Lu C, Yang Y, Chen X. Ultra-thin conductive graphitic carbon nitride assembly through van der Waals epitaxy toward high-energy-density flexible supercapacitors. Nano Lett 2019;19(6):4103–11. 链接1

[182] Lu C, Chen X. Flexible and electroactive ionogel graphene composite actuator. Materials 2020;13(3):656. 链接1

[183] Asaka K, Mukai K, Sugino T, Kiyohara K. Ionic electroactive polymer actuators based on nano-carbon electrodes. Polym Int 2013;62(9):1263–70. 链接1

[184] Baughman RH, Cui C, Zakhidov AA, Iqbal Z, Barisci JN, Spinks GM, et al. Carbon nanotube actuators. Science 1999;284(5418):1340–4. 链接1

[185] Fukushima T, Kosaka A, Ishimura Y, Yamamoto T, Takigawa T, Ishii N, et al. Molecular ordering of organic molten salts triggered by single-walled carbon nanotubes. Science 2003;300(5628):2072–4. 链接1

[186] Mukai K, Asaka K, Kiyohara K, Sugino T, Takeuchi I, Fukushima T, et al. High performance fully plastic actuator based on ionic-liquid-based bucky gel. Electrochim Acta 2008;53(17):5555–62. 链接1

[187] Mukai K, Asaka K, Sugino T, Kiyohara K, Takeuchi I, Terasawa N, et al. Highly conductive sheets from millimeter-long single-walled carbon nanotubes and ionic liquids: application to fast-moving, low-voltage electromechanical actuators operable in air. Adv Mater 2009;21(16):1582–5. 链接1

[188] Hata K, Futaba DN, Mizuno K, Namai T, Yumura M, Iijima S. Water-assisted highly efficient synthesis of impurity-free single-walled carbon nanotubes. Science 2004;306(5700):1362–4. 链接1

[189] Torop J, Sugino T, Asaka K, Jänes A, Lust E, Aabloo A. Nanoporous carbidederived carbon based actuators modified with gold foil: prospect for fast response and low voltage applications. Sens Actuators B Chem 2012;161 (1):629–34. 链接1

[190] Must I, Kaasik F, Põldsalu I, Johanson U, Punning A, Aabloo A. A carbidederived carbon laminate used as a mechanoelectrical sensor. Carbon 2012;50 (2):535–41. 链接1

[191] Kaasik F, Must I, Baranova I, Põldsalu I, Lust E, Johanson U, et al. Scalable fabrication of ionic and capacitive laminate actuators for soft robotics. Sens Actuators B Chem 2017;246:154–63. 链接1

[192] Takeuchi I, Asaka K, Kiyohara K, Sugino T, Terasawa N, Mukai K, et al. Electromechanical behavior of a fully plastic actuator based on dispersed nano-carbon/ionic-liquid-gel electrodes. Carbon 2009;47(5):1373–80. 链接1

[193] Palmre V, Lust E, Jänes A, Koel M, Peikolainen AL, Torop J, et al. Electroactive polymer actuators with carbon aerogel electrodes. J Mater Chem 2011;21 (8):2577–83. 链接1

[194] Cottinet PJ, Souders C, Tsai SY, Liang R, Wang B, Zhang C. Electromechanical actuation of buckypaper actuator: material properties and performance relationships. Phys Lett A 2012;376(12–13):1132–6. 链接1

[195] Palmre V, Brandell D, Mäeorg U, Torop J, Volobujeva O, Punning A, et al. Nanoporous carbon-based electrodes for high strain ionomeric bending actuators. Smart Mater Struct 2009;18(9):095028. 链接1

[196] Sugino T, Kiyohara K, Takeuchi I, Mukai K, Asaka K. Improving the actuating response of carbon nanotube/ionic liquid composites by the addition of conductive nanoparticles. Carbon 2011;49(11):3560–70. 链接1

[197] Mukai K, Asaka K, Hata K, Otero TF, Oike H. High-speed carbon nanotube actuators based on an oxidation/reduction reaction. Chemistry 2011;17 (39):10965–71. 链接1

[198] Kim J, Bae SH, Kotal M, Stalbaum T, Kim KJ, Oh IK. Soft but powerful artificial muscles based on 3D graphene–CNT–Ni heteronanostructures. Small 2017;13(31):1701314. 链接1

[199] Wu G, Wu X, Xu Y, Cheng H, Meng J, Yu Q, et al. High-performance hierarchical black-phosphorous-based soft electrochemical actuators in bioinspired applications. Adv Mater 2019;31(25):1806492. 链接1

[200] Lu L, Liu J, Hu Y, Zhang Y, Chen W. Graphene-stabilized silver nanoparticle electrochemical electrode for actuator design. Adv Mater 2013;25(9):1270–4. 链接1

[201] Umrao S, Tabassian R, Kim J, Nguyen VH, Zhou Q, Nam S, et al. MXene artificial muscles based on ionically cross-linked Ti3C2Tx electrode for kinetic soft robotics. Sci Robot 2019;4(33):eaaw7797. 链接1

[202] Lian Y, Liu Y, Jiang T, Shu J, Lian H, Cao M. Enhanced electromechanical performance of graphite oxide–Nafion nanocomposite actuator. J Phys Chem C 2010;114(21):9659–63. 链接1

[203] Ying Z, Wang Q, Xie J, Li B, Lin X, Hui S. Novel electrically-conductive electroresponsive hydrogels for smart actuators with a carbon-nanotube-enriched three-dimensional conductive network and a physical-phase-type threedimensional interpenetrating network. J Mater Chem C 2020;8 (12):4192–205. 链接1

[204] Asaka K, Oguro K. Active microcatheter and biomedical soft devices based on IPMC actuators. In: Carpi F, Smela E, editors. Biomedical applications of electroactive polymer actuators. Chichester: John Wiley & Sons, Ltd.; 2009. p. 121–36. 链接1

[205] Annabestani M, Fardmanesh M. Ionic electro active polymer-based soft actuators and their applications in microfluidic micropumps, microvalves, and micromixers: a review. 2019. arXiv:1904.07149.

[206] Bhandari B, Lee GY, Ahn SH. A review on IPMC material as actuators and sensors: fabrications, characteristics and applications. Int J Precis Eng Manuf 2012;13(1):141–63. 链接1

[207] Zhang Z, Demir KG, Gu GX. Developments in 4D-printing: a review on current smart materials, technologies, and applications. Int J Smart Nano Mater 2019;10(3):205–24. 链接1

[208] Boldini A, Porfiri M. Multiaxial deformations of ionic polymer metal composites. Int J Eng Sci 2020;149:103227. 链接1

[209] Zolfagharian A, Kaynak A, Bodaghi M, Kouzani AZ, Gharaie S, Nahavandi S. Control-based 4D printing: adaptive 4D-printed systems. Appl Sci 2020;10 (9):3020. 链接1

[210] Kruusamäe K, Punning A, Aabloo A, Asaka K. Self-sensing ionic polymer actuators: a review. Actuators 2015;4(1):17–38. 链接1

[211] Mohdlsa WH, Hunt A, HosseinNia SH. Sensing and self-sensing actuation methods for ionic polymer–metal composite (IPMC): a review. Sensors 2019;19(18):3967. 链接1

[212] Vermes B, Czigany T. Non-conventional deformations: materials and actuation. Materials 2020;13(6):1383. 链接1

[213] Bashir M, Rajendran P. A review on electroactive polymers development for aerospace applications. J Intell Mater Syst Struct 2018;29(19):3681–95. 链接1

[214] Walsh C. Human-in-the-loop development of soft wearable robots. Nat Rev Mater 2018;3(6):78–80. 链接1

[215] Sherif HMF. The artificial ventricle: a conceptual design for a novel mechanical circulatory support system. Minim Invasive Ther Allied Technol 2009;18(3):178–80. 链接1

[216] Sawa Y, Urayama K, Takigawa T, DeSimone A, Teresi L. Thermally driven giant bending of liquid crystal elastomer films with hybrid alignment. Macromolecules 2010;43(9):4362–9. 链接1

[217] Mol GN, Harris KD, Bastiaansen CWM, Broer DJ. Thermo-mechanical responses of liquid-crystal networks with a splayed molecular organization. Adv Funct Mater 2005;15(7):1155–9. 链接1

[218] Ryu S, Lee P, Chou JB, Xu R, Zhao R, Hart AJ, et al. Extremely elastic wearable carbon nanotube fiber strain sensor for monitoring of human motion. ACS Nano 2015;9(6):5929–36. 链接1

[219] Roh E, Hwang BU, Kim D, Kim BY, Lee NE. Stretchable, transparent, ultrasensitive, and patchable strain sensor for human–machine interfaces comprising a nanohybrid of carbon nanotubes and conductive elastomers. ACS Nano 2015;9(6):6252–61. 链接1

[220] Yamada T, Hayamizu Y, Yamamoto Y, Yomogida Y, Izadi-Najafabadi A, Futaba DN, et al. A stretchable carbon nanotube strain sensor for human-motion detection. Nat Nanotechnol 2011;6(5):296–301. 链接1

[221] Majidi C, Kramer R, Wood RJ. A non-differential elastomer curvature sensor for softer-than-skin electronics. Smart Mater Struct 2011;20(10):105017. 链接1

[222] Dickey MD, Chiechi RC, Larsen RJ, Weiss EA, Weitz DA, Whitesides GM. Eutectic gallium–indium (EGaIn): a liquid metal alloy for the formation of stable structures in microchannels at room temperature. Adv Funct Mater 2008;18(7):1097–104. 链接1

[223] Gong S, Lai DTH, Su B, Si KJ, Ma Z, Yap LW, et al. Highly stretchy black gold eskin nanopatches as highly sensitive wearable biomedical sensors. Adv Electron Mater 2015;1(4):1400063. 链接1

[224] Wu JM, Chen CY, Zhang Y, Chen KH, Yang Y, Hu Y, et al. Ultrahigh sensitive piezotronic strain sensors based on a ZnSnO3 nanowire/microwire. ACS Nano 2012;6(5):4369–74. 链接1

[225] Xiao X, Yuan L, Zhong J, Ding T, Liu Y, Cai Z, et al. High-strain sensors based on ZnO nanowire/polystyrene hybridized flexible films. Adv Mater 2011;23 (45):5440–4. 链接1

[226] Yao S, Zhu Y. Wearable multifunctional sensors using printed stretchable conductors made of silver nanowires. Nanoscale 2014;6(4):2345–52. 链接1

[227] Amjadi M, Pichitpajongkit A, Lee S, Ryu S, Park I. Highly stretchable and sensitive strain sensor based on silver nanowire–elastomer nanocomposite. ACS Nano 2014;8(5):5154–63. 链接1

[228] Lee J, Kim S, Lee J, Yang D, Park BC, Ryu S, et al. A stretchable strain sensor based on a metal nanoparticle thin film for human motion detection. Nanoscale 2014;6(20):11932–9. 链接1

[229] Segev-Bar M, Haick H. Flexible sensors based on nanoparticles. ACS Nano 2013;7(10):8366–78. 链接1

[230] Megha R, Ali FA, Ravikiran YT, Ramana CHVV, Kiran Kumar ABV, Mishra DK, et al. Conducting polymer nanocomposite based temperature sensors: a review. Inorg Chem Commun 2018;98:11–28. 链接1

[231] Faridbod F, Norouzi P, Dinarvand R, Ganjali MR. Developments in the field of conducting and non-conducting polymer based potentiometric membrane sensors for ions over the past decade. Sensors 2008;8(4):2331–412. 链接1

[232] Saylan Y, Akgönüllü S, Yavuz H, Ünal S, Denizli A. Molecularly imprinted polymer based sensors for medical applications. Sensors 2019;19(6):1279. 链接1

[233] Gerboni G, Diodato A, Ciuti G, Cianchetti M, Menciassi A. Feedback control of soft robot actuators via commercial flex bend sensors. IEEE/ASME Trans Mechatron 2017;22(4):1881–8. 链接1

[234] Saggio G. A novel array of flex sensors for a goniometric glove. Sens Actuators A Phys 2014;205:119–25. 链接1

[235] Chortos A, Bao Z. Skin-inspired electronic devices. Mater Today 2014;17 (7):321–31. 链接1

[236] Zhao J, Dai K, Liu C, Zheng G, Wang B, Liu C, et al. A comparison between strain sensing behaviors of carbon black/polypropylene and carbon nanotubes/polypropylene electrically conductive composites. Compos Part A-Appl S 2013;48:129–36. 链接1

[237] Wichmann MHG, Buschhorn ST, Böger L, Adelung R, Schulte K. Direction sensitive bending sensors based on multi-wall carbon nanotube/epoxy nanocomposites. Nanotechnology 2008;19(47):475503. 链接1

[238] Neely JS, Restle PJ, inventors; International Business Machines Corporation, assignee. Capacitive bend sensor. United States patent US 5610528. 1997 Mar 11.

[239] Manandhar P, Calvert PD, Buck JR. Elastomeric ionic hydrogel sensor for large strains. IEEE Sens J 2012;12(6):2052–61. 链接1

[240] Klapper R, Upham P. The impact of micro-firm everyday practices on sustainable development in local communities. In: Kyrö P, editor. Handbook of entrepreneurship and sustainable development research. Cheltenham: Edward Elgar Publishing; 2015. p. 275–95. 链接1

[241] Metzger C, Fleisch E, Meyer J, Dansachmüller M, Graz I, Kaltenbrunner M, et al. Flexible-foam-based capacitive sensor arrays for object detection at low cost. Appl Phys Lett 2008;92(1):013506. 链接1

[242] Gisby TA, O’Brien BM, Anderson IA. Self sensing feedback for dielectric elastomer actuators. Appl Phys Lett 2013;102(19):193703. 链接1

[243] Kollosche M, Stoyanov H, Laflamme S, Kofod G. Strongly enhanced sensitivity in elastic capacitive strain sensors. J Mater Chem 2011;21(23):8292–4. 链接1

[244] Ding Y, Xu T, Onyilagha O, Fong H, Zhu Z. Recent advances in flexible and wearable pressure sensors based on piezoresistive 3D monolithic conductive sponges. ACS Appl Mater Interfaces 2019;11(7):6685–704. 链接1

[245] Wang X, Dong L, Zhang H, Yu R, Pan C, Wang ZL. Recent progress in electronic skin. Adv Sci 2015;2(10):1500169. 链接1

[246] Hammock ML, Chortos A, Tee BCK, Tok JBH, Bao Z. 25th anniversary article: the evolution of electronic skin (e-skin): a brief history, design considerations, and recent progress. Adv Mater 2013;25(42):5997–6038. 链接1

[247] Qiu L, Bulut Coskun M, Tang Y, Liu JZ, Alan T, Ding J, et al. Ultrafast dynamic piezoresistive response of graphene-based cellular elastomers. Adv Mater 2016;28(1):194–200. 链接1

[248] Lv L, Zhang P, Xu T, Qu L. Ultrasensitive pressure sensor based on an ultralight sparkling graphene block. ACS Appl Mater Interfaces 2017;9(27):22885–92. 链接1

[249] Biddiss E, Chau T. Electroactive polymeric sensors in hand prostheses: bending response of an ionic polymer metal composite. Med Eng Phys 2006;28(6):568–78. 链接1

[250] John SW, Alici G, Spinks GM, Madden JD, Wallace GG. Towards fully optimized conducting polymer bending sensors: the effect of geometry. Smart Mater Struct 2009;18(8):085007. 链接1

[251] Lee CK, Moon FC. Laminated piezopolymer plates for torsion and bending sensors and actuators. J Acoust Soc Am 1989;85(6):2432–9. 链接1

[252] Albehaijan HA, Piedrahita CR, Cao J, Soliman M, Mitra S, Kyu T. Mechanoelectrical transduction of polymer electrolyte membranes: effect of branched networks. ACS Appl Mater Interfaces 2020;12(6):7518–28. 链接1

[253] Di Pasquale G, Graziani S, Pollicino A, Strazzeri S. A vortex-shedding flowmeter based on IPMCs. Smart Mater Struct 2016;25(1):015011. 链接1

[254] Kocer B, Zangrilli U, Akle B, Weiland L. Experimental and theoretical investigation of ionic polymer transducers in shear sensing. J Intell Mater Syst Struct 2015;26(15):2042–54. 链接1

[255] Xie R, Xie Y, López-Barrón CR, Gao KZ, Wagner NJ. Ultra-stretchable conductive iono-elastomer and motion strain sensor system developed therefrom. Technol Innov 2018;19(3):613–26. 链接1

[256] Xie Y, Xie R, Yang HC, Chen Z, Hou J, López-Barrón CR, et al. Iono-elastomerbased wearable strain sensor with real-time thermomechanical dual response. ACS Appl Mater Interfaces 2018;10(38):32435–43. 链接1

[257] Yao S, Zhu Y. Nanomaterial-enabled stretchable conductors: strategies, materials and devices. Adv Mater 2015;27(9):1480–511. 链接1

[258] Xu F, Zhu Y. Highly conductive and stretchable silver nanowire conductors. Adv Mater 2012;24(37):5117–22. 链接1

[259] Ahmed EM. Hydrogel: preparation, characterization, and applications: a review. J Adv Res 2015;6(2):105–21. 链接1

[260] Bai Y, Chen B, Xiang F, Zhou J, Wang H, Suo Z. Transparent hydrogel with enhanced water retention capacity by introducing highly hydratable salt. Appl Phys Lett 2014;105(15):151903. 链接1

[261] Larson C, Peele B, Li S, Robinson S, Totaro M, Beccai L, et al. Highly stretchable electroluminescent skin for optical signaling and tactile sensing. Science 2016;351(6277):1071–4. 链接1

[262] Le Bideau J, Viau L, Vioux A. Ionogels, ionic liquid based hybrid materials. Chem Soc Rev 2011;40(2):907–25. 链接1

[263] Marr PC, Marr AC. Ionic liquid gel materials: applications in green and sustainable chemistry. Green Chem 2016;18(1):105–28. 链接1

[264] Ding Y, Zhang J, Chang L, Zhang X, Liu H, Jiang L. Preparation of highperformance ionogels with excellent transparency, good mechanical strength, and high conductivity. Adv Mater 2017;29(47):1704253. 链接1

[265] Li M, Li J, Na H, Vlassak JJ. Mechanical behavior of poly(methyl methacrylate)- based ionogels. Soft Matter 2014;10(40):7993–8000. 链接1

[266] Chen B, Lu JJ, Yang CH, Yang JH, Zhou J, Chen YM, et al. Highly stretchable and transparent ionogels as nonvolatile conductors for dielectric elastomer transducers. ACS Appl Mater Interfaces 2014;6(10):7840–5. 链接1

[267] Robinson SS, O’Brien KW, Zhao H, Peele BN, Larson CM, Mac Murray BC, et al. Integrated soft sensors and elastomeric actuators for tactile machines with kinesthetic sense. Extreme Mech Lett 2015;5:47–53. 链接1

[268] Crump MR, Gong AT, Chai D, Bidinger SL, Pavinatto FJ, Reihsen TE, et al. Monolithic 3D printing of embeddable and highly stretchable strain sensors using conductive ionogels. Nanotechnology 2019;30(36):364002. 链接1

[269] Narongthong J, Le HH, Das A, Sirisinha C, Wießner S. Ionic liquid enabled electrical-strain tuning capability of carbon black based conductive polymer composites for small-strain sensors and stretchable conductors. Compos Sci Technol 2019;174:202–11. 链接1

[270] Homayounfar SZ, Andrew TL. Wearable sensors for monitoring human motion: a review on mechanisms, materials, and challenges. SLAS Technol 2020;25(1):9–24. 链接1

[271] Wang X, Gu Y, Xiong Z, Cui Z, Zhang T. Silk-molded flexible, ultrasensitive, and highly stable electronic skin for monitoring human physiological signals. Adv Mater 2014;26(9):1336–42. 链接1

[272] Zhu B, Niu Z, Wang H, Leow WR, Wang H, Li Y, et al. Microstructured graphene arrays for highly sensitive flexible tactile sensors. Small 2014;10 (18):3625–31. 链接1

[273] Jung S, Kim JH, Kim J, Choi S, Lee J, Park I, et al. Reverse-micelle-induced porous pressure-sensitive rubber for wearable human–machine interfaces. Adv Mater 2014;26(28):4825–30. 链接1

[274] Yao HB, Ge J, Wang CF, Wang X, Hu W, Zheng ZJ, et al. A flexible and highly pressure-sensitive graphene–polyurethane sponge based on fractured microstructure design. Adv Mater 2013;25(46):6692–8. 链接1

[275] Lee S, Reuveny A, Reeder J, Lee S, Jin H, Liu Q, et al. A transparent bendinginsensitive pressure sensor. Nat Nanotechnol 2016;11(5):472–8. 链接1

[276] Wang Q, Jian M, Wang C, Zhang Y. Carbonized silk nanofiber membrane for transparent and sensitive electronic skin. Adv Funct Mater 2017;27 (9):1605657. 链接1

[277] Shi L, Zhu T, Gao G, Zhang X, Wei W, Liu W, et al. Highly stretchable and transparent ionic conducting elastomers. Nat Commun 2018;9(1):2630. 链接1

[278] Lee J, Faruk Emon MO, Vatani M, Choi JW. Effect of degree of crosslinking and polymerization of 3D printable polymer/ionic liquid composites on performance of stretchable piezoresistive sensors. Smart Mater Struct 2017;26(3):035043. 链接1

[279] Emon MOF, Lee J, Choi UH, Kim DH, Lee KC, Choi JW. Characterization of a soft pressure sensor on the basis of ionic liquid concentration and thickness of the piezoresistive layer. IEEE Sens J 2019;19(15):6076–84. 链接1

[280] Emon MOF, Alkadi F, Philip DG, Kim DH, Lee KC, Choi JW. Multi-material 3D printing of a soft pressure sensor. Addit Manuf 2019;28:629–38. 链接1

[281] Peng S, Li Y, Wu L, Zhong J, Weng Z, Zheng L, et al. 3D printing mechanically robust and transparent polyurethane elastomers for stretchable electronic sensors. ACS Appl Mater Interfaces 2020;12(5):6479–88. 链接1

[282] Charaya H, La TG, Rieger J, Chung HJ. Thermochromic and piezocapacitive flexible sensor array by combining composite elastomer dielectrics and transparent ionic hydrogel electrodes. Adv Mater Technol 2019;4 (9):1900327. 链接1

[283] Qiu Z, Wan Y, Zhou W, Yang J, Yang J, Huang J, et al. Ionic skin with biomimetic dielectric layer templated from Calathea Zebrine leaf. Adv Funct Mater 2018;28(37):1802343. 链接1

[284] Chhetry A, Kim J, Yoon H, Park JY. Ultrasensitive interfacial capacitive pressure sensor based on a randomly distributed microstructured iontronic film for wearable applications. ACS Appl Mater Interfaces 2019;11 (3):3438–49. 链接1

[285] Cho SH, Lee SW, Yu S, Kim H, Chang S, Kang D, et al. Micropatterned pyramidal ionic gels for sensing broad-range pressures with high sensitivity. ACS Appl Mater Interfaces 2017;9(11):10128–35. 链接1

[286] Jin ML, Park S, Lee Y, Lee JH, Chung J, Kim JS, et al. An ultrasensitive, viscoporoelastic artificial mechanotransducer skin inspired by Piezo2 protein in mammalian Merkel cells. Adv Mater 2017;29(13):1605973. 链接1

[287] Chun KY, Son YJ, Han CS. Highly sensitive and patchable pressure sensors mimicking ion-channel-engaged sensory organs. ACS Nano 2016;10 (4):4550–8. 链接1

[288] Schrenk-Siemens K, Wende H, Prato V, Song K, Rostock C, Loewer A, et al. Piezo2 is required for mechanotransduction in human stem cell-derived touch receptors. Nat Neurosci 2015;18(1):10–6. 链接1

[289] Woo SH, Ranade S, Weyer AD, Dubin AE, Baba Y, Qiu Z, et al. Piezo2 is required for Merkel-cell mechanotransduction. Nature 2014;509 (7502):622–6. 链接1

[290] Cho KJ, Koh JS, Kim S, Chu WS, Hong Y, Ahn SH. Review of manufacturing processes for soft biomimetic robots. Int J Precis Eng Manuf 2009;10 (3):171–81. 链接1

[291] Miriyev A, Stack K, Lipson H. Soft material for soft actuators. Nat Commun 2017;8(1):596. 链接1

[292] Palagi S, Fischer P. Bioinspired microrobots. Nat Rev Mater 2018;3 (6):113–24. 链接1

[293] Cianchetti M, Laschi C, Menciassi A, Dario P. Biomedical applications of soft robotics. Nat Rev Mater 2018;3(6):143–53. 链接1

[294] Sitti M. Miniature soft robots—road to the clinic. Nat Rev Mater 2018;3 (6):74–5. 链接1

[295] Trivedi D, Rahn CD, Kier WM, Walker ID. Soft robotics: biological inspiration, state of the art, and future research. Appl Bionics Biomech 2008;5(3):99–117. 链接1

[296] Rus D, Tolley MT. Design, fabrication and control of soft robots. Nature 2015;521(7553):467–75. 链接1

[297] Tolley MT, Shepherd RF, Mosadegh B, Galloway KC, Wehner M, Karpelson M, et al. A resilient, untethered soft robot. Soft Robot 2014;1(3):213–23. 链接1

[298] Mazzolai B, Margheri L, Cianchetti M, Dario P, Laschi C. Soft-robotic arm inspired by the octopus: II. from artificial requirements to innovative technological solutions. Bioinspir Biomim 2012;7(2):025005.

[299] Margheri L, Laschi C, Mazzolai B. Soft robotic arm inspired by the octopus: I. from biological functions to artificial requirements. Bioinspir Biomim 2012;7 (2):025004.

[300] Majidi C. Soft robotics: a perspective—current trends and prospects for the future. Soft Robot 2014;1(1):5–11. 链接1

[301] Xie M, Hisano K, Zhu M, Toyoshi T, Pan M, Okada S, et al. Flexible multifunctional sensors for wearable and robotic applications. Adv Mater Technol 2019;4(3):1800626. 链接1

[302] Chen J, Zheng J, Gao Q, Zhang J, Zhang J, Omisore OM, et al. Polydimethylsiloxane (PDMS)-based flexible resistive strain sensors for wearable applications. Appl Sci 2018;8(3):345. 链接1

[303] Wang Y, Gong S, Wang SJ, Simon GP, Cheng W. Volume-invariant ionic liquid microbands as highly durable wearable biomedical sensors. Mater Horiz 2016;3(3):208–13. 链接1

[304] Nam SH, Jeon PJ, Min SW, Lee YT, Park EY, Im S. Highly sensitive non-classical strain gauge using organic heptazole thin-film transistor circuit on a flexible substrate. Adv Funct Mater 2014;24(28):4413–9. 链接1

[305] Jeong JW, Yeo WH, Akhtar A, Norton JJS, Kwack YJ, Li S, et al. Materials and optimized designs for human–machine interfaces via epidermal electronics. Adv Mater 2013;25(47):6839–46. 链接1

[306] Park JJ, Hyun WJ, Mun SC, Park YT, Park OO. Highly stretchable and wearable graphene strain sensors with controllable sensitivity for human motion monitoring. ACS Appl Mater Interfaces 2015;7(11):6317–24. 链接1

相关研究