期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2022年 第13卷 第6期 doi: 10.1016/j.eng.2021.02.025

基于多流体静电纺丝的空心/核壳多级结构纳米纤维的制备及其应用

a Key Laboratory of Bioinspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, China
b School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
c College of Chemical Engineering, Inner Mongolia University of Technology, Hohhot 010051, China

收稿日期: 2020-07-30 修回日期: 2021-02-08 录用日期: 2021-11-26 发布日期: 2022-04-29

下一篇 上一篇

摘要

Recently, electrospinning (ESP) has been widely used as a synthetic technology to prepare nanofibers with unique properties from various raw materials. The applications of functionalized nanofibers have gradually developed into one of the most exciting topics in the field of materials science. In this review, we focus on the preparation of multi-structure fibrous nanomaterials by means of multi-fluidic ESP and review the applications of multi-structure nanofibers in energy, catalysis, and biology. First, the working principle and process of ESP are introduced; then, we demonstrate how the microfluidic concept is combined with the ESP technique to the multi-fluidic ESP technique. Subsequently, the applications of multistructure nanofibers in energy (Li+/Na+ batteries and Li–S batteries), hetero-catalysis, and biology (drug delivery and tissue engineering) are introduced. Finally, challenges and future directions in this emerging field are summarized.

图片

图1

图2

图3

图4

图5

图6

图7

图8

图9

图10

参考文献

[ 1 ] Peng S, Jin G, Li L, Li K, Srinivasan M, Ramakrishna S, et al. Multi-functional electrospun nanofibres for advances in tissue regeneration, energy conversion & storage, and water treatment. Chem Soc Rev 2016;45(5):1225‒41. 链接1

[ 2 ] Sridhar R, Lakshminarayanan R, Madhaiyan K, Amutha Barathi V, Lim KH, Ramakrishna S. Electrosprayed nanoparticles and electrospun nanofibers based on natural materials: applications in tissue regeneration, drug delivery and pharmaceuticals. Chem Soc Rev 2015;44(3):790‒814. 链接1

[ 3 ] Jin T, Han Q, Wang Y, Jiao L. 1D nanomaterials: design, synthesis, and applications in sodium-ion batteries. Small 2018;14(2):1703086. 链接1

[ 4 ] Cavaliere S, Subianto S, Savych I, Jones DJ, Rozière J. Electrospinning: designed architectures for energy conversion and storage devices. Energy Environ Sci 2011;4(12):4761‒85. 链接1

[ 5 ] Tan X, Rodrigue D. A review on porous polymeric membrane preparation. Part I: production techniques with polysulfone and poly (vinylidene fluoride). Polymers 2019;11(7):1160. 链接1

[ 6 ] Quirós J, Boltes K, Rosal R. Bioactive applications for electrospun fibers. Polym Rev 2016;56(4):631‒67. 链接1

[ 7 ] Liu J, Zhang F, Hou L, Li S, Gao Y, Xin Z, et al. Synergistic engineering of 1D electrospun nanofibers and 2D nanosheets for sustainable applications. Sustain Mater Technol 2020;26:e00214. 链接1

[ 8 ] Jiang S, Chen Y, Duan G, Mei C, Greiner A, Agarwal S. Electrospun nanofiber reinforced composites: a review. Polym Chem 2018;9(20):2685‒720. 链接1

[ 9 ] Yue G, Wang Y, Li D, Hou L, Cui Z, Li Q, et al. Bioinspired surface with special wettability for liquid transportation and separation. Sustain Mater Technol 2020;25:e00175. 链接1

[10] Zhang CL, Yu SH. Nanoparticles meet electrospinning: recent advances and future prospects. Chem Soc Rev 2014;43(13):4423‒48. 链接1

[11] Wu J, Wang N, Wang L, Dong H, Zhao Y, Jiang L. Unidirectional waterpenetration composite fibrous film via electrospinning. Soft Matter 2012;8(22):5996‒9. 链接1

[12] Gao S, Wang N, Li S, Li D, Cui Z, Yue G, et al. A multi-wall Sn/SnO2@carbon hollow nanofiber anode material for high-rate and long-life lithium-ion batteries. Angew Chem Int Ed Engl 2020;59(6):2465‒72. 链接1

[13] Liu K, Wang N, Wang W, Shi L, Li H, Guo F, et al. A bio-inspired high strength three-layer nanofiber vascular graft with structure guided cell growth. J Mater Chem B 2017;5(20):3758‒64. 链接1

[14] Loscertales IG, Barrero A, Guerrero I, Cortijo R, Marquez M, Gañán-Calvo AM. Micro/nano encapsulation via electrified coaxial liquid jets. Science 2002;295(5560):1695‒8. 链接1

[15] Li L, Peng S, Lee JKY, Ji D, Srinivasan M, Ramakrishna S. Electrospun hollow nanofibers for advanced secondary batteries. Nano Energy 2017;39:111‒39. 链接1

[16] Liu J, Jiang G, Liu Y, Di J, Wang Y, Zhao Z, et al. Hierarchical macro‒meso‒microporous ZSM-5 zeolite hollow fibers with highly efficient catalytic cracking capability. Sci Rep 2015;4(1):7276. 链接1

[17] Wu Y, Hu S, Xu R, Wang J, Peng Z, Zhang Q, et al. Boosting potassium-ion battery performance by encapsulating red phosphorus in free-standing nitrogen-doped porous hollow carbon nanofibers. Nano Lett 2019;19(2):1351‒8. 链接1

[18] Birajdar MS, Lee J. Sonication-triggered zero-order release by uncorking core‒shell nanofibers. Chem Eng J 2016;288:1‒8. 链接1

[19] Chen H, Zhao Y, Song Y, Jiang L. One-step multicomponent encapsulation by compound-fluidic electrospray. J Am Chem Soc 2008;130(25):7800‒1. 链接1

[20] Cai M, He H, Zhang X, Yan Xu, Li J, Chen F, et al. Efficient synthesis of PVDF/PI side-by-side bicomponent nanofiber membrane with enhanced mechanical strength and good thermal stability. Nanomaterials 2018;9(1):39. 链接1

[21] Lin T, Wang H, Wang X. Self-crimping bicomponent nanofibers electrospun from polyacrylonitrile and elastomeric polyurethane. Adv Mater 2005;17(22):2699‒703. 链接1

[22] Li Z, Zhang JT, Chen YM, Li J, Lou XW. Pie-like electrode design for high-energy density lithium‒sulfur batteries. Nat Commun 2015;6(1):8850. 链接1

[23] Nikmaram N, Roohinejad S, Hashemi S, Koubaa M, Barba FJ, Abbaspourrad A, et al. Emulsion-based systems for fabrication of electrospun nanofibers: food, pharmaceutical and biomedical applications. RSC Adv 2017;7(46):28951‒64. 链接1

[24] Yang Y, Wang S, Zhang L, Deng Y, Xu H, Qin X, et al. CoS-interposed and Ketjen black-embedded carbon nanofiber framework as a separator modulation for high performance Li‒S batteries. Chem Eng J 2019;369:77‒86. 链接1

[25] Li S, Cui Z, Li D, Yue G, Liu J, Ding H, et al. Hierarchically structured electrospinning nanofibers for catalysis and energy storage. Compos Commun 2019;13:1‒11. 链接1

[26] Gao X, Han S, Zhang R, Liu G, Wu J. Progress in electrospun composite nanofibers: composition, performance and applications for tissue engineering. J Mater Chem B 2019;7(45):7075‒89. 链接1

[27] Wang W, Zhang MJ, Chu LY. Functional polymeric microparticles engineered from controllable microfluidic emulsions. Acc Chem Res 2014;47(2):373‒84. 链接1

[28] Deng NN, Sun J, Wang W, Ju XJ, Xie R, Chu LY. Wetting-induced coalescence of nanoliter drops as microreactors in microfluidics. ACS Appl Mater Interfaces 2014;6(6):3817‒21. 链接1

[29] Wu B, Yang C, Li B, Feng L, Hai M, Zhao CX, et al. Active encapsulation in biocompatible nanocapsules. Small 2020;16(30):2002716. 链接1

[30] Yuan Y, Brouchon J, Calvo-Calle JM, Xia J, Sun L, Zhang X, et al. Droplet encapsulation improves accuracy of immune cell cytokine capture assays. Lab Chip 2020;20(8):1513‒20. 链接1

[31] Shah RK, Shum HC, Rowat AC, Lee D, Agresti JJ, Utada AS, et al. Designer emulsions using microfluidics. Mater Today 2008;11(4):18‒27. 链接1

[32] He H, Yang C, Wang F, Wei Z, Shen J, Chen D, et al. Mechanically strong globular-protein-based fibers obtained using a microfluidic spinning technique. Angew Chem Int Ed Engl 2020;59(11):4344‒8. 链接1

[33] Deng Ke, Liu Z, Luo F, Xie R, He XH, Jiang MY, et al. Controllable fabrication of polyethersulfone hollow fiber membranes with a facile double co-axial microfluidic device. J Membr Sci 2017;526:9‒17. 链接1

[34] Utada AS, Lorenceau E, Link DR, Kaplan PD, Stone HA, Weitz DA. Monodisperse double emulsions generated from a microcapillary device. Science 2005;308(5721):537‒41. 链接1

[35] Ahn K, Agresti J, Chong H, Marquez M, Weitz DA. Electrocoalescence of drops synchronized by size-dependent flow in microfluidic channels. Appl Phys Lett 2006;88(26):264105. 链接1

[36] Xue J, Wu T, Dai Y, Xia Y. Electrospinning and electrospun nanofibers: methods, materials, and applications. Chem Rev 2019;119(8):5298‒415. 链接1

[37] Lu X, Wang C, Favier F, Pinna N. Electrospun nanomaterials for supercapacitor electrodes: designed architectures and electrochemical performance. Adv Energy Mater 2017;7(2):1601301. 链接1

[38] Liu M, Deng N, Ju J, Fan L, Wang L, Li Z, et al. Electrospun nanofiber materials for lithium‒sulfur batteries. Adv Funct Mater 2019;29(49):1905467. 链接1

[39] Robinson TM, Hutmacher DW, Dalton PD. The next frontier in melt electrospinning: taming the jet. Adv Funct Mater 2019;29(44):1904664. 链接1

[40] Xue J, Xie J, Liu W, Xia Y. Electrospun nanofibers: new concepts, materials, and applications. Acc Chem Res 2017;50(8):1976‒87. 链接1

[41] Hou L, Wang N, Man X, Cui Z, Wu J, Liu J, et al. Interpenetrating Janus membrane for high rectification ratio liquid unidirectional penetration. ACS Nano 2019;13(4):4124‒32. 链接1

[42] Hou LL, Wang N, Wu J, Cui ZM, Jiang L, Zhao Y. Bioinspired superwettability electrospun micro/nanofibers and their applications. Adv Funct Mater 2018;28(49):1801114. 链接1

[43] Han D, Steckl AJ. Coaxial electrospinning formation of complex polymer fibers and their applications. ChemPlusChem 2019;84(10):1453‒97. 链接1

[44] Li D, Xia Y. Direct fabrication of composite and ceramic hollow nanofibers by electrospinning. Nano Lett 2004;4(5):933‒8. 链接1

[45] McClellan P, Landis WJ. Recent applications of coaxial and emulsion electrospinning methods in the field of tissue engineering. Biores Open Access 2016;5(1):212‒7. 链接1

[46] Lu Y, Huang J, Yu G, Cardenas R, Wei S, Wujcik EK, et al. Coaxial electrospun fibers: applications in drug delivery and tissue engineering. Wires Nanomed Nanobiotechno 2016;8(5):654‒77. 链接1

[47] Li F, Zhao Y, Wang S, Han D, Jiang L, Song Y. Thermochromic core‒shell nanofibers fabricated by melt coaxial electrospinning. J Appl Polym Sci 2009;112(1):269‒74. 链接1

[48] Chen H, Wang N, Di J, Zhao Y, Song Y, Jiang L. Nanowire-in-microtube structured core/shell fibers via multifluidic coaxial electrospinning. Langmuir 2010;26(13):11291‒6. 链接1

[49] Yoon KR, Lee GY, Jung JW, Kim NH, Kim SO, Kim ID. One-dimensional RuO2/Mn2O3 hollow architectures as efficient bifunctional catalysts for lithium‒oxygen batteries. Nano Lett 2016;16(3):2076‒83. 链接1

[50] Walia N, Dasgupta N, Ranjan S, Ramalingam C, Gandhi M. Methods for nanoemulsion and nanoencapsulation of food bioactives. Environ Chem Lett 2019;17(4):1471‒83. 链接1

[51] Zhao Y, Cao X, Jiang L. Bio-mimic multichannel microtubes by a facile method. J Am Chem Soc 2007;129(4):764‒5. 链接1

[52] Ma Q, Wang J, Dong X, Yu W, Liu G. Flexible Janus nanoribbons array: a new strategy to achieve excellent electrically conductive anisotropy, magnetism, and photoluminescence. Adv Funct Mater 2015;25(16):2436‒43. 链接1

[53] Zhao L, Xie S, Liu Y, Liu Q, Song X, Li X. Janus micromotors for motion-capturelighting of bacteria. Nanoscale 2019;11(38):17831‒40. 链接1

[54] Roh KH, Martin DC, Lahann J. Biphasic Janus particles with nanoscale anisotropy. Nat Mater 2005;4(10):759‒63. 链接1

[55] Jalani G, Jung CW, Lee JS, Lim DW. Fabrication and characterization of anisotropic nanofiber scaffolds for advanced drug delivery systems. Int J Nanomed 2014;9(Suppl 1):33‒49. 链接1

[56] Wang N, Gao Y, Wang YX, Liu K, Lai W, Hu Y, et al. Nanoengineering to achieve high sodium storage: a case study of carbon coated hierarchical nanoporous TiO2 microfibers. Adv Sci 2016;3(8):1600013. 链接1

[57] Li X, Sun Y, Xu X, Wang YX, Chou SL, Cao A, et al. Lotus rhizome-like S/N‒C with embedded WS2 for superior sodium storage. J Mater Chem A 2019;7(45):25932‒43. 链接1

[58] Yang G, Li X, He Y, Ma J, Ni G, Zhou S. From nano to micro to macro: electrospun hierarchically structured polymeric fibers for biomedical applications. Prog Polym Sci 2018;81:80‒113. 链接1

[59] Shang L, Yu Y, Liu Y, Chen Z, Kong T, Zhao Y. Spinning and applications of bioinspired fiber systems. ACS Nano 2019;13(3):2749‒72. 链接1

[60] Wang X, Ding B, Yu J, Wang M. Engineering biomimetic superhydrophobic surfaces of electrospun nanomaterials. Nano Today 2011;6(5):510‒30. 链接1

[61] Wang Y, Chen C, Xie H, Gao T, Yao Y, Pastel G, et al. 3D-printed all-fiber Li-ion battery toward wearable energy storage. Adv Funct Mater 2017;27(43):1703140. 链接1

[62] Wang T, Kim HK, Liu Y, Li W, Griffiths JT, Wu Y, et al. Bottom-up formation of carbon-based structures with multilevel hierarchy from MOF-guest polyhedra. J Am Chem Soc 2018;140(19):6130‒6. 链接1

[63] Ladpli P, Nardari R, Kopsaftopoulos F, Chang FK. Multifunctional energy storage composite structures with embedded lithium-ion batteries. J Power Sources 2019;414:517‒29. 链接1

[64] Rao J, Liu N, Zhang Z, Su J, Li L, Xiong L, et al. All-fiber-based quasi-solid-state lithium-ion battery towards wearable electronic devices with outstanding flexibility and self-healing ability. Nano Energy 2018;51:425‒33. 链接1

[65] Weng W, Sun Q, Zhang Ye, Lin H, Ren J, Lu X, et al. Winding aligned carbon nanotube composite yarns into coaxial fiber full batteries with high performances. Nano Lett 2014;14(6):3432‒8. 链接1

[66] Cui J, Zhan TG, Zhang KD, Chen D. The recent advances in constructing designed electrode in lithium metal batteries. Chin Chem Lett 2017;28(12):2171‒9. 链接1

[67] Zhang XQ, Zhao CZ, Huang JQ, Zhang Q. Recent advances in energy chemical engineering of next-generation lithium batteries. Engineering 2018;4(6):831‒47. 链接1

[68] Dong S, Li C, Ge X, Li Z, Miao X, Yin L. ZnS‒Sb2S3@C core‒double shell polyhedron structure derived from metal‒organic framework as anodes for high performance sodium ion batteries. ACS Nano 2017;11(6):6474‒82. 链接1

[69] Sun J, Lv C, Lv F, Chen S, Li D, Guo Z, et al. Tuning the shell number of multishelled metal oxide hollow fibers for optimized lithium-ion storage. ACS Nano 2017;11(6):6186‒93. 链接1

[70] Wu J, Qin X, Miao C, He YB, Liang G, Zhou D, et al. A honeycomb-cobweb inspired hierarchical core‒shell structure design for electrospun silicon/carbon fibers as lithium-ion battery anodes. Carbon 2016;98:582‒91. 链接1

[71] Zhang H, Qin X, Wu J, He YB, Du H, Li B, et al. Electrospun core‒shell silicon/carbon fibers with an internal honeycomb-like conductive carbon framework as an anode for lithium ion batteries. J Mater Chem A 2015;3(13):7112‒20. 链接1

[72] Zhou D, Song WL, Fan LZ. Hollow core‒shell SnO2/C fibers as highly stable anodes for lithium-ion batteries. ACS Appl Mater Interfaces 2015;7(38):21472‒8. 链接1

[73] Zhu J, Wu Y, Huang X, Huang L, Cao M, Song G, et al. Self-healing liquid metal nanoparticles encapsulated in hollow carbon fibers as a free-standing anode for lithium-ion batteries. Nano Energy 2019;62:883‒9. 链接1

[74] He Y, Zhang Y, Ding F, Li X, Wang Z, Lü Z, et al. Formation of hollow nanofiber rolls through controllable carbon diffusion for Li metal host. Carbon 2020;157:622‒30. 链接1

[75] Chen YM, Yu L, Lou XW. Hierarchical tubular structures composed of Co3O4 hollow nanoparticles and carbon nanotubes for lithium storage. Angew Chem Int Ed Engl 2016;55(20):5990‒3. 链接1

[76] Hwang TH, Lee YM, Kong BS, Seo JS, Choi JW. Electrospun core‒shell fibers for robust silicon nanoparticle-based lithium ion battery anodes. Nano Lett 2012;12(2):802‒7. 链接1

[77] Li L, Peng S, Cheah YL, Wang J, Teh P, Ko Y, et al. Electrospun eggroll-like CaSnO3 nanotubes with high lithium storage performance. Nanoscale 2013;5(1):134‒8. 链接1

[78] Wei H, Rodriguez EF, Best AS, Hollenkamp AF, Chen D, Caruso RA. Ordered mesoporous graphitic carbon/iron carbide composites with high porosity as a sulfur host for Li‒S batteries. ACS Appl Mater Interfaces 2019;11(14):13194‒204. 链接1

[79] Zeng Z, Li W, Wang Q, Liu X. Programmed design of a lithium‒sulfur battery cathode by integrating functional units. Adv Sci 2019;6(17):1900711. 链接1

[80] Zhao M, Peng HJ, Zhang ZW, Li BQ, Chen X, Xie J, et al. Activating inert metallic compounds for high-rate lithium‒sulfur batteries through in situ etching of extrinsic metal. Angew Chem Int Ed Engl 2019;58(12):3779‒83. 链接1

[81] Shao Y, Wang Q, Hu L, Pan H, Shi X. BC2N monolayers as promising anchoring materials for lithium‒sulfur batteries: first-principles insights. Carbon 2019;149:530‒7. 链接1

[82] Song C, Peng C, Bian Z, Dong F, Xu H, Yang J, et al. Stable and fast lithium‒sulfur battery achieved by rational design of multifunctional separator. Energy Environ Mater 2019;2(3):216‒24. 链接1

[83] Thangavel V, Guerrero OX, Quiroga M, Mikala AM, Rucci A, Franco AA. A three dimensional kinetic Monte Carlo model for simulating the carbon/sulfur mesostructural evolutions of discharging lithium sulfur batteries. Energy Storage Mater 2020;24:472‒85. 链接1

[84] Wu Y, Gao M, Li X, Liu Y, Pan H. Preparation of mesohollow and microporous carbon nanofiber and its application in cathode material for lithium‒sulfur batteries. J Alloys Compd 2014;608:220‒8. 链接1

[85] Yao Yu, Wang H, Yang H, Zeng S, Xu R, Liu F, et al. A dual-functional conductive framework embedded with TiN‒VN heterostructures for highly efficient polysulfide and lithium regulation toward stable Li‒S full batteries. Adv Mater 2020;32(6):1905658. 链接1

[86] Li Lu, Hou L, Cheng J, Simmons T, Zhang F, Zhang LT, et al. A flexible carbon/sulfur-cellulose core‒shell structure for advanced lithium‒sulfur batteries. Energy Storage Mater 2018;15:388‒95. 链接1

[87] Liao Y, Xiang J, Yuan L, Hao Z, Gu J, Chen X, et al. Biomimetic root-like TiN/C@S nanofiber as a freestanding cathode with high sulfur loading for lithium‒sulfur batteries. ACS Appl Mater Interfaces 2018;10(44):37955‒62. 链接1

[88] Cao X, Deng J, Pan K. Electrospinning Janus type CoOx/C nanofibers as electrocatalysts for oxygen reduction reaction. Adv Fiber Mater 2020;2(2):85‒92. 链接1

[89] Anis SF, Khalil A, Saepurahman, Singaravel G, Hashaikeh R. A review on the fabrication of zeolite and mesoporous inorganic nanofibers formation for catalytic applications. Microporous Mesoporous Mater 2016;236:176‒92. 链接1

[90] Wang Y, Huang H, Gao J, Lu G, Zhao Y, Xu Y, et al. TiO2‒SiO2 composite fibers with tunable interconnected porous hierarchy fabricated by single-spinneret electrospinning toward enhanced photocatalytic activity. J Mater Chem A 2014;2(31):12442. 链接1

[91] Kang S, Hwang J. Fabrication of hollow activated carbon nanofibers (HACNFs) containing manganese oxide catalyst for toluene removal via two-step process of electrospinning and thermal treatment. Chem Eng J 2020;379:122315. 链接1

[92] Jiang S, Lv LP, Landfester K, Crespy D. Nanocontainers in and onto nanofibers. Acc Chem Res 2016;49(5):816‒23. 链接1

[93] Huang Y, Song J, Yang C, Long Y, Wu H. Scalable manufacturing and applications of nanofibers. Mater Today 2019;28:98‒113. 链接1

[94] Yue G, Li S, Li D, Liu J, Wang Y, Zhao Y, et al. Coral-like Au/TiO2 hollow nanofibers with through-holes as a high-efficient catalyst through mass transfer enhancement. Langmuir 2019;35(14):4843‒8. 链接1

[95] Yang X, Li L, Yang D, Nie J, Ma G. Electrospun core‒shell fibrous 2D scaffold with biocompatible poly(glycerol sebacate) and poly-L-lactic acid for wound healing. Adv Fiber Mater 2020;2(2):105‒17. 链接1

[96] Guangming G, Juntao W, Yong Z, Jingang L, Xu J, Lei J. A novel fluorinated polyimide surface with petal effect produced by electrospinning. Soft Matter 2014;10(4):549‒52. 链接1

[97] Huang C, Thomas NL. Fabrication of porous fibers via electrospinning: strategies and applications. Polym Rev 2019;60(4):595‒647. 链接1

[98] Dong Y, Zheng Y, Zhang K, Yao Y, Wang L, Li X, et al. Electrospun nanofibrous materials for wound healing. Adv Fiber Mater 2020;2(4):212‒27. 链接1

[99] Abdullah MF, Nuge T, Andriyana A, Ang BC, Muhamad F. Core‒shell fibers: design, roles, and controllable release strategies in tissue engineering and drug delivery. Polymers 2019;11(12):2008. 链接1

[100] Karger-Kocsis J, Kéki S. Review of progress in shape memory epoxies and their composites. Polymers 2017;10(1):34. 链接1

[101] Yang G, Wang J, Wang Y, Li L, Guo X, Zhou S. An implantable active-targeting micelle-in-nanofiber device for efficient and safe cancer therapy. ACS Nano 2015;9(2):1161‒74. 链接1

[102] Han D, Sasaki M, Yoshino H, Kofuji S, Sasaki AT, Steckl AJ. In-vitro evaluation of MPA-loaded electrospun coaxial fiber membranes for local treatment of glioblastoma tumor cells. J Drug Deliv Sci Technol 2017;40:45‒50. 链接1

[103] Xu T, Yang H, Yang D, Yu ZZ. Polylactic acid nanofiber scaffold decorated with chitosan island-like topography for bone tissue engineering. ACS Appl Mater Interfaces 2017;9(25):21094‒104. 链接1

[104] Shalumon KT, Lai GJ, Chen CH, Chen JP. Modulation of bone-specific tissue regeneration by incorporating bone morphogenetic protein and controlling the shell thickness of silk fibroin/chitosan/nanohydroxyapatite core‒shell nanofibrous membranes. ACS Appl Mater Interfaces 2015;7(38):21170‒81. 链接1

[105] Chen H, Huang X, Zhang M, Damanik F, Baker MB, Leferink A, et al. Tailoring surface nanoroughness of electrospun scaffolds for skeletal tissue engineering. Acta Biomater 2017;59:82‒93. Erratum in: Acta Biomater 2017; 71:525. 链接1

相关研究