期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2022年 第14卷 第7期 doi: 10.1016/j.eng.2021.02.027

仿生牙釉质材料的工程制造策略

Department of Orthodontics, Peking University School and Hospital of Stomatology & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China

# These authors contributed equally to this work.

收稿日期: 2020-06-16 修回日期: 2020-11-16 录用日期: 2021-02-08 发布日期: 2022-05-25

下一篇 上一篇

摘要

牙釉质是由有序排列的羟基磷灰石纳米晶体和交错的蛋白质基质组成的生物组织,具有优异的力学和美学特性。然而,当牙釉质受损时很难自然再生,并且随着牙釉质损伤不断发展,可能会累及牙髓,甚至牙齿脱落。牙釉质作为最硬的生物复合材料,长期以来一直被认为是一种很有前景的承重材料。因此,了解牙釉质形成过程和牙釉质结构基序,对于设计和工程制造具有高强度和高弹性的仿生复合材料非常重要。既往研究已经对牙釉质的微观结构和力学性能进行了广泛的研究,并通过模拟天然牙釉质的结构及性质开发了各种仿生牙釉质的材料合成策略。本文着眼于仿生牙釉质材料的工程制造,重点介绍仿生牙釉质材料合成策略的最新进展,并讨论其潜在应用价值。

图片

图1

图2

图3

图4

图5

图6

图7

参考文献

[ 1 ] Craig RG, Peyton FA. The micro-hardness of enamel and dentin. J Dent Res 1958;37(4):661‒8. 链接1

[ 2 ] Yeom B, Sain T, Lacevic N, Bukharina D, Cha SH, Waas AM, et al. Abiotic tooth enamel. Nature 2017;543(7643):95‒8. 链接1

[ 3 ] Thompson VP. The tooth: an analogue for biomimetic materials design and processing. Dent Mater 2020;36(1):25‒42. 链接1

[ 4 ] Hayasaki H, Okamoto A, Iwase Y, Yamasaki Y, Nakata M. Occlusal contact area of mandibular teeth during lateral excursion. Int J Prosthodont 2004;17 (1):72‒6.

[ 5 ] Waltimo A, Könönen M. Maximal bite force and its association with signs and symptoms of craniomandibular disorders in young Finnish non-patients. Acta Odontol Scand 1995;53(4):254‒8. 链接1

[ 6 ] He LH, Swain MV. Understanding the mechanical behaviour of human enamel from its structural and compositional characteristics. J Mech Behav Biomed Mater 2008;1(1):18‒29. 链接1

[ 7 ] Li C, Ding L, Zhong B. Highway planning and design in the Qinghai‒Tibet plateau of China: a cost-safety balance perspective. Engineering 2019;‍5(2):337‒49. 链接1

[ 8 ] Zhou T, Song Z, Sundmacher K. Big data creates new opportunities for materials research: a review on methods and applications of machine learning for materials design. Engineering 2019;5(6):1017‒26. 链接1

[ 9 ] Takagi J, Wada A. Higher performance seismic structures for advanced cities and societies. Engineering 2019;5(2):184‒9. 链接1

[10] Liu A, Teo I, Chen DD, Lu S, Wuest T, Zhang ZN, et al. Biologically inspired design of context-aware smart. Prod Eng 2019;5(4):637‒45. 链接1

[11] Habraken W, Habibovic P, Epple M, Bohner M. Calcium phosphates in biomedical applications: materials for the future? Mater Today 2016;‍19(2):69‒87. 链接1

[12] Teaford MF, Smith MM, Ferguson MJ. Development, function and evolution of teeth. Cambridge: Cambridge University Press; 2000. 链接1

[13] Fincham AG, Moradian-Oldak J, Simmer JP. The structural biology of the developing dental enamel matrix. J Struct Biol 1999;126(3):270‒99. 链接1

[14] Berkovitz BK, Moxham BL. Colour atlas and textbook of oral anatomy, histology and embryology. 2nd ed. Maryland Heights: Mosby-Year Book; 1992.

[15] Schroeder HE, Oksche A, Vollrath L, editors. Handbook of microscopic anatomy. New York City: Springer-Verlag; 1989.

[16] Inage T, Shimokawa H, Teranishi Y, Iwase T, Toda Y, Moro I. Immunocytochemical demonstration of amelogenins and enamelins secreted by ameloblasts during the secretory and maturation stages. Arch Histol Cytol 1989;52(3):213‒29. 链接1

[17] Wei Y, Liu S, Xiao Z, Zhao H, Luo J, Deng X, et al. Enamel repair with amorphous ceramics. Adv Mater 2020;32(7):1907067. 链接1

[18] Habelitz S. Materials engineering by ameloblasts. J Dent Res 2015;94(6):759‒67. 链接1

[19] Popowics TE, Rensberger JM, Herring SW. Enamel microstructure and microstrain in the fracture of human and pig molar cusps. Arch Oral Biol 2004;49(8):595‒605. 链接1

[20] Cuy JL, Mann AB, Livi KJ, Teaford MF, Weihs TP. Nanoindentation mapping of the mechanical properties of human molar tooth enamel. Arch Oral Biol 2002;47(4):281‒91. 链接1

[21] Lippert F, Parker DM, Jandt KD. In vitro demineralization/remineralization cycles at human tooth enamel surfaces investigated by AFM and nanoindentation. J Colloid Interface Sci 2004;280(2):442‒8. 链接1

[22] Al-Jawad M, Steuwer A, Kilcoyne SH, Shore RC, Cywinski R, Wood DJ. 2D mapping of texture and lattice parameters of dental enamel. Biomaterials 2007;28(18):2908‒14. 链接1

[23] White SN, Paine ML, Luo W, Sarikaya M, Fong H, Yu Z, et al. The dentino‒enamel junction is a broad transitional zone uniting dissimilar bioceramic composites. J Am Ceram Soc 2000;83(1):238‒40. 链接1

[24] Langer R, Vacanti JP. Tissue engineering. Science 1993;260(5110):920‒6. 链接1

[25] Tucker A, Sharpe P. The cutting-edge of mammalian development; how the embryo makes teeth. Nat Rev Genet 2004;5(7):499‒508. 链接1

[26] Diekwisch T, David S, Bringas Jr P, Santos V, Slavkin HC. Antisense inhibition of AMEL translation demonstrates supramolecular controls for enamel HAP crystal growth during embryonic mouse molar development. Development 1993;117(2):471‒82. 链接1

[27] Nakao K, Morita R, Saji Y, Ishida K, Tomita Y, Ogawa M, et al. The development of a bioengineered organ germ method. Nat Methods 2007;4(3):227‒30. 链接1

[28] Ohazama A, Modino SA, Miletich I, Sharpe PT. Stem-cell-based tissue engineering of murine teeth. J Dent Res 2004;83(7):518‒22. 链接1

[29] Angelova Volponi A, Kawasaki M, Sharpe PT. Adult human gingival epithelial cells as a source for whole-tooth bioengineering. J Dent Res 2013;92(4):329‒34. 链接1

[30] Ono M, Oshima M, Ogawa M, Sonoyama W, Hara ES, Oida Y, et al. Practical whole-tooth restoration utilizing autologous bioengineered tooth germ transplantation in a postnatal canine model. Sci Rep 2017;7(1):44522. 链接1

[31] Zheng Y, Cai J, Hutchins AP, Jia L, Liu P, Yang D, et al. Remission for loss of odontogenic potential in a new micromilieu in vitro. PLoS ONE 2016;11(4): e0152893. 链接1

[32] Chen CS, Mrksich M, Huang S, Whitesides GM, Ingber DE. Geometric control of cell life and death. Science 1997;276(5317):1425‒8. 链接1

[33] Yang L, Angelova Volponi A, Pang Y, Sharpe PT. Mesenchymal cell community effect in whole tooth bioengineering. J Dent Res 2017;96(2):186‒91. 链接1

[34] Kuchler-Bopp S, Bécavin T, Kökten T, Weickert JL, Keller L, Lesot H, et al. Threedimensional micro-culture system for tooth tissue engineering. J Dent Res 2016;95(6):657‒64. 链接1

[35] Li L, Mao C, Wang J, Xu X, Pan H, Deng Y, et al. Bio-inspired enamel repair via Glu-directed assembly of apatite nanoparticles: an approach to biomaterials with optimal characteristics. Adv Mater 2011;23(40):4695‒701. 链接1

[36] Gebauer D, Völkel A, Cölfen H. Stable prenucleation calcium carbonate clusters. Science 2008;322(5909):1819‒22. 链接1

[37] Yamagishi K, Onuma K, Suzuki T, Okada F, Tagami J, Otsuki M, et al. A synthetic enamel for rapid tooth repair. Nature 2005;433(7028):819. 链接1

[38] Onuma K, Ito A. Cluster growth model for hydroxyapatite. J Mater Chem 1998;10(11):3346‒51. 链接1

[39] Shao C, Jin B, Mu Z, Lu H, Zhao Y, Wu Z, et al. Repair of tooth enamel by a biomimetic mineralization frontier ensuring epitaxial growth. Sci Adv 2019;5(8):aaw9569. 链接1

[40] Gordon LM, Cohen MJ, MacRenaris KW, Pasteris JD, Seda T, Joester D. Amorphous intergranular phases control the properties of rodent tooth enamel. Science 2015;347(6223):746‒50. 链接1

[41] Zou Z, Liu X, Chen L, Lin K, Chang J. Dental enamel-like hydroxyapatite transformed directly from monetite. J Mater Chem 2012;22(42):22637‒41. 链接1

[42] Chen FF, Zhu YJ, Xiong ZC, Sun TW, Shen YQ. Highly flexible superhydrophobic and fire-resistant layered inorganic paper. ACS Appl Mater Interfaces 2016;8 (50):34715‒24. 链接1

[43] Yu HP, Zhu YJ, Lu BQ. Dental enamel-mimetic large-sized multi-scale ordered architecture built by a well controlled bottom-up strategy. Chem Eng J 2019;360:1633‒45. 链接1

[44] Richardson JJ, Björnmalm M, Caruso F. Technology-driven layer-by-layer assembly of nanofilms. Science 2015;348(6233):aaa2491. 链接1

[45] De Obaldia EE, Jeong C, Grunenfelder LK, Kisailus D, Zavattieri P. Analysis of the mechanical response of biomimetic materials with highly oriented microstructures through 3D printing, mechanical testing and modeling. J Mech Behav Biomed Mater 2015;48:70‒85. 链接1

[46] Feilden E, Ferraro C, Zhang Q, García-Tuñón E, D’Elia E, Giuliani F, et al. 3D printing bioinspired ceramic composites. Sci Rep 2017;7(1):13759. 链接1

[47] Fox B, Subic A. An Industry 4.0 approach to the 3D printing of composite materials. Engineering 2019;5(4):621‒3. 链接1

[48] Wiedemann-Bidlack FB, Kwak SY, Beniash E, Yamakoshi Y, Simmer JP, Margolis HC. Effects of phosphorylation on the self-assembly of native full-length porcine amelogenin and its regulation of calcium phosphate formation in vitro. J Struct Biol 2011;173(2):250‒60. 链接1

[49] Prajapati S, Tao J, Ruan Q, De Yoreo JJ, Moradian-Oldak J. Matrix metalloproteinase-20 mediates dental enamel biomineralization by preventing protein occlusion inside apatite crystals. Biomaterials 2016;75:260‒70. 链接1

[50] Kwak SY, Litman A, Margolis HC, Yamakoshi Y, Simmer JP. Biomimetic enamel regeneration mediated by leucine-rich amelogenin peptide. J Dent Res 2017;96(5):524‒30. 链接1

[51] Li QL, Ning TY, Cao Y, Zhang WB, Mei ML, Chu CH. A novel self-assembled oligopeptide amphiphile for biomimetic mineralization of enamel. BMC Biotechnol 2014;14:32. 链接1

[52] Beniash E, Simmer JP, Margolis HC. Structural changes in amelogenin upon self-assembly and mineral interactions. J Dent Res 2012;91(10):967‒72. 链接1

[53] Kind L, Stevanovic S, Wuttig S, Wimberger S, Hofer J, Müller B, et al. Biomimetic remineralization of carious lesions by self-assembling peptide. J Dent Res 2017;96(7):790‒7. 链接1

[54] Zhou Y, Zhou Y, Gao L, Wu C, Chang J. Synthesis of artificial dental enamel by an elastin-like polypeptide assisted biomimetic approach. J Mater Chem B Mater 2018;6(5):844‒53. 链接1

[55] Elsharkawy S, Al-Jawad M, Pantano MF, Tejeda-Montes E, Mehta K, Jamal H, et al. Protein disorder‍‒‍order interplay to guide the growth of hierarchical mineralized structures. Nat Commun 2018;9(1):2145. 链接1

[56] Chen H, Banaszak Holl M, Orr BG, Majoros I, Clarkson BH. Interaction of dendrimers (artificial proteins) with biological hydroxyapatite crystals. J Dent Res 2003;82(6):443‒8. 链接1

[57] Chen M, Yang J, Li J, Liang K, He L, Lin Z, et al. Modulated regeneration of acidetched human tooth enamel by a functionalized dendrimer that is an analog of amelogenin. Acta Biomater 2014;10(10):4437‒46. 链接1

[58] Yang Y, Lv XP, Shi W, Li JY, Li DX, Zhou XD, et al. 8DSS-promoted remineralization of initial enamel caries in vitro. J Dent Res 2014;93(5):520‒4. 链接1

[59] Chen Z, Miao Z, Zhang P, Xiao H, Liu H, Ding C, et al. Bioinspired enamel-like oriented minerals on general surfaces: towards improved mechanical properties. J Mater Chem B 2019;7(34):5237‒44. 链接1

[60] Li VC. High-performance and multifunctional cement-based composite. Engineering 2019;5(2):250‒60. 链接1

[61] Denry I, Kelly JR. Emerging ceramic-based materials for dentistry. J Dent Res 2014;93(12):1235‒42. 链接1

[62] Piconi C, Maccauro G. Zirconia as a ceramic biomaterial. Biomaterials 1999;20(1):1‒25. 链接1

[63] Denry I, Kelly JR. State of the art of zirconia for dental applications. Dent Mater 2008;24(3):299‒307. 链接1

[64] Luthardt RG, Holzhüter M, Sandkuhl O, Herold V, Schnapp JD, Kuhlisch E, et al. Reliability and properties of ground Y-TZP-zirconia ceramics. J Dent Res 2002;81(7):487‒91. 链接1

[65] Xu HHK, Smith DT, Jahanmir S, Romberg E, Kelly JR, Thompson VP, et al. Indentation damage and mechanical properties of human enamel and dentin. J Dent Res 1998;77(3):472‒80. 链接1

[66] Tan G, Zhang J, Zheng L, Jiao D, Liu Z, Zhang Z, et al. Nature-inspired nacre-like composites combining human tooth-matching elasticity and hardness with exceptional damage tolerance. Adv Mater 2019;31(52):1904603. 链接1

[67] Le Ferrand H, Bouville F, Niebel TP, Studart AR. Magnetically assisted slip casting of bioinspired heterogeneous composites. Nat Mater 2015;14 (11):1172‒9. Corrected in: Nat Mater 2017;16(12):1272‒3. 链接1

[68] Qi X, Zhang D, Ma Z, Cao W, Hou Y, Zhu J, et al. An epidermis-like hierarchical smart coating with a hardness of tooth enamel. ACS Nano 2018;12(2):1062‒73. 链接1

[69] Prajapati S, Ruan Q, Mukherjee K, Nutt S, Moradian-Oldak J. The presence of MMP-20 reinforces biomimetic enamel regrowth. J Dent Res 2018;‍97(1):84‒90. 链接1

[70] Ruan Q, Moradian-Oldak J. Development of amelogenin-chitosan hydrogel for in vitro enamel regrowth with a dense interface. J Vis Exp 2014;89:51606. 链接1

[71] Wegst UG, Bai H, Saiz E, Tomsia AP, Ritchie RO. Bioinspired structural materials. Nat Mater 2015;14(1):23‒36. 链接1

[72] Navrotsky A. New developments in the calorimetry of high-temperature materials. Engineering 2019;5(3):366‒71. 链接1

相关研究