期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2022年 第19卷 第12期 doi: 10.1016/j.eng.2021.03.027

长江干流水下岸坡侵蚀自动识别

a State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200000, China
b Nanjing Center, China Geological Survey, Nanjing 210000, China
c Institute of Eco-Chongming, Shanghai 200000, China

收稿日期: 2020-05-12 修回日期: 2020-11-22 录用日期: 2021-03-03 发布日期: 2021-09-09

下一篇 上一篇

摘要

识别河岸侵蚀的风险是确保早期预警和预防或控制包括长江在内的河流集水区崩岸的一项重要挑战。本文引入一种基于地貌要素的算法,通过调整多波束回波探测数据的平坦度来提取河岸侵蚀信息。该算法绘制了10 个水下地貌形态要素,包括坡、坡脚、水平面、脊、顶、谷、凹陷、凸起、坑和坡肩。利用21 个平坦度值构建水下河岸侵蚀特征的识别策略。结果表明:当平坦度为10°时,作为侵蚀载体的岸坡陡坎被坡要素覆盖。平坦度为0°时,冲刷坑和河岸破损由河岸附近的坑要素和岸坡中的凹陷表示。河道水下沙波是加速河岸侵蚀的重要因素,尤其是靠近河岸坡脚的沙波;沙波的临界平坦度为3°。分析了水下地貌形
态要素的分布,并用于绘制河岸侵蚀库存图。分析结果表明,近岸区水深较大,易形成较大的冲刷坑和较长的河岸陡坎。窝崩往往发生在较长的岸坡处,以缩短其长度。经讨论陆地、海洋和河流环境中平坦度值的不同设置,得出的结论是,多样化的平坦度值能够显著识别河流水下地貌形态。因此,本研究为基于平坦度的河流水下地貌形态要素识别提供参考,增强了从大量多波束测深数据定位水下岸坡失稳迹象与风险的能力。

补充材料

图片

图1

图2

图3

图4

图5

图6

图7

图8

图9

参考文献

[ 1 ] Sekely AC, Mulla DJ, Bauer DW. Streambank slumping and its contribution to the phosphorus and suspended sediment loads of the Blue Earth River, Minnesota. J Soil Water Conserv 2002;57(5):243‒50. 链接1

[ 2 ] Evans DJ, Gibson CE, Rossell RS. Sediment loads and sources in heavily modified Irish catchments: a move towards informed management strategies. Geomorphology 2006;79(1‒2):93‒113. 链接1

[ 3 ] Wilson CG, Kuhnle RA, Bosch DD, Steiner JL, Starks PJ, Tomer MD, et al. Quantifying relative contributions from sediment sources in Conservation Effects Assessment Project watersheds. J Soil Water Conserv 2008;63(6):523‒32. 链接1

[ 4 ] Henshaw AJ, Thorne CR, Clifford NJ. Identifying causes and controls of river bank erosion in a British upland catchment. Catena 2013;100:107‒19. 链接1

[ 5 ] Marteau B, Vericat D, Gibbins C, Batalla RJ, Green DR. Application of structure-from-motion photogrammetry to river restoration. Earth Surf Process Landf 2017;42(3):503‒15. 链接1

[ 6 ] Xia J, Zong Q, Deng S, Xu Q, Lu J. Seasonal variations in composite riverbank stability in the Lower Jingjiang Reach China. J Hydrol 2014;519:3664‒73. 链接1

[ 7 ] Konsoer KM, Rhoads BL, Langendoen EJ, Best JL, Ursic ME, Abad JD, et al. Spatial variability in bank resistance to erosion on a large meandering, mixed bedrock-alluvial river. Geomorphology 2016;252:80‒97. 链接1

[ 8 ] Gilvear DJ, Davies JR, Winterbottom SJ. Mechanisms of floodbank failure during large flood events on the rivers Tay and Earn, Scotland. Q J Eng Geol Hydrogeol 1994;27(4):319‒32. 链接1

[ 9 ] Kummu M, Lu XX, Rasphone A, Sarkkula J, Koponen J. Riverbank changes along the Mekong River: remote sensing detection in the Vientiane‒Nong Khai area. Quat Int 2008;186(1):100‒12. 链接1

[10] Sarkar A, Garg RD, Sharma N. RS-GIS based assessment of river dynamics of Brahmaputra River in India. J Water Resource Prot 2012;04(02):63‒72. 链接1

[11] Winterbottom SJ, Gilvear DJ. A GIS-based approach to mapping probabilities of river bank erosion: regulated River Tummel, Scotland. Regul Rivers Res Manage 2000;16(2):127‒40. 链接1

[12] Bandyopadhyay S, Ghosh K, De SK. A proposed method of bank erosion vulnerability zonation and its application on the River Haora, Tripura, India. Geomorphology 2014;224:111‒21. 链接1

[13] Midgley TL, Fox GA, Heeren DM. Evaluation of the bank stability and toe erosion model (BSTEM) for predicting lateral retreat on composite streambanks. Geomorphology 2012;145‒146:107‒14.

[14] Deng S, Xia J, Zhou M, Lin F. Coupled modeling of bed deformation and bank erosion in the Jingjiang Reach of the middle Yangtze River. J Hydrol 2019;568:221‒33. 链接1

[15] Hackney C, Best J, Leyland J, Darby SE, Parsons D, Aalto R, et al. Modulation of outer bank erosion by slump blocks: disentangling the protective and destructive role of failed material on the three-dimensional flow structure. Geophys Res Lett 2015;42(24):10663‒70. 链接1

[16] Jugie M, Gob F, Virmoux C, Brunstein D, Tamisier V, Le Coeur C, et al. Characterizing and quantifying the discontinuous bank erosion of a small low energy river using structure-from-motion Photogrammetry and erosion pins. J Hydrol 2018;563:418‒34. 链接1

[17] Twichell DC, Chaytor JD, ten Brink US, Buczkowski B. Morphology of late Quaternary submarine landslides along the US Atlantic continental margin. Mar Geol 2009;264(1‒2):4‒15. 链接1

[18] Puga-Bernabéu Á, Webster JM, Beaman RJ, Guilbaud V. Morphology and controls on the evolution of a mixed carbonate‒siliciclastic submarine canyon system, Great Barrier Reef margin, north-eastern Australia. Mar Geol 2011;289(1‒4):100‒16. 链接1

[19] McAdoo BG, Pratson LF, Orange DL. Submarine landslide geomorphology, US continental slope. Mar Geol 2000;169(1‒2):103‒36.

[20] Green A, Uken R. Submarine landsliding and canyon evolution on the northern KwaZulu-Natal continental shelf, South Africa, SW Indian Ocean. Mar Geol 2008;254(3-4):152‒70. 链接1

[21] Wood J. The geomorphological characterisation of digital elevation models [dissertation]. Leicester: University of Leicester; 1996.

[22] MacMillan RA, Pettapiece WW, Nolan SC, Goddard TW. A generic procedure for automatically segmenting landforms into landform elements using DEMs, heuristic rules and fuzzy logic. Fuzzy Sets Syst 2000;113(1):81‒109. 链接1

[23] Adediran AO, Parcharidis I, Poscolieri M, Pavlopoulos K. Computer-assisted discrimination of morphological units on north-central Crete (Greece) by applying multivariate statistics to local relief gradients. Geomorphology 2004;58(1‒4):357‒70. 链接1

[24] Schmidt J, Hewitt A. Fuzzy land element classification from DTMs based on geometry and terrain position. Geoderma 2004;121(3‒4):243‒56.

[25] Drăgut L, Blaschke T. Automated classification of landform elements using object-based image analysis. Geomorphology 2006;81(3‒4):330‒44.

[26] Jasiewicz J, Stepinski TF. Geomorphons—a pattern recognition approach to classification and mapping of landforms. Geomorphology 2013;182:147‒56. 链接1

[27] Cui X, Xing Z, Yang F, Fan M, Ma Y, Sun Yi. A method for multibeam seafloor terrain classification based on self-adaptive geographic classification unit. Appl Acoust 2020;157:107029. 链接1

[28] Di Stefano M, Mayer LA. An automatic procedure for the quantitative characterization of submarine bedforms. Geosciences 2018;8(1):28. 链接1

[29] Debese N, Jacq JJ, Garlan T. Extraction of sandy bedforms features through geodesic morphometry. Geomorphology 2016;268:82‒97. 链接1

[30] Libohova Z, Winzeler HE, Lee B, Schoeneberger PJ, Datta J, Owens PR. Geomorphons: landform and property predictions in a glacial moraine in Indiana landscapes. Catena 2016;142:66‒76. 链接1

[31] Campos Pinto L, de Mello CR, Norton LD, Owens PR, Curi N. Spatial prediction of soil-water transmissivity based on fuzzy logic in a Brazilian headwater watershed. Catena 2016;143:26‒34. 链接1

[32] Kramm T, Hoffmeister D, Curdt C, Maleki S, Khormali F, Kehl M. Accuracy assessment of landform classification approaches on different spatial scales for the Iranian loess plateau. ISPRS Int J Geoinf 2017;6(11):366. 链接1

[33] Luo W, Liu CC. Innovative landslide susceptibility mapping supported by geomorphon and geographical detector methods. Landslides 2018;‍15(3):465‒74. 链接1

[34] Chea H, Sharma M. Residential segregation in hillside areas of Seoul, South Korea: a novel approach of geomorphons classification. Appl Geogr 2019;108:9‒21. 链接1

[35] Flynn T, Rozanov A, de Clercq W, Warr B, Clarke C. Semi-automatic disaggregation of a national resource inventory into a farm-scale soil depth class map. Geoderma 2019;337:1136‒45. 链接1

[36] Duan J, Duan W, Zhu J. Analysis of riverbank sloughing and stability. Eng J Wuhan Univ 2004;37(6):17‒21. Chinese.

[37] Zhang X, Jiang C, Chen Q, Ying Q. Types and features of riverbank collapse. Adv Sci Technol Water Resour 2008;28(5):66‒70.

[38] Xu Y, Liang Z, Wang X, Li W, Du Y. Analysis on bank failure and river channel changes. J Sediment Res 2001;4:41‒6.

[39] Jin L, Wang N, Fu Q. Analysis of topography of bank-slides and its affecting factors in Mahu reach of the Yangtze River. J Sediment Res 1998;2:67‒71.

[40] Peng Y, Xiong C, Yang C. Analysis of relationship between fluvial process and bank caving in the Jingjiang Reach of Yangtze River. J China Hydrol 2010;30(6):29‒36.

[41] Liao WH. Region description using extended local ternary patterns. In: Proceedings of the 20th International Conference on Pattern Recognition; 2010 Aug 23‒26; Istanbul, Turkey; New York City: IEEE; 2010. 链接1

[42] Yokoyama R, Shirasawa M, Pike RJ. Visualizing topography by openness: a new application of image processing to digital elevation models. Photogramm Eng Remote Sensing 2002;68(3):257‒66.

[43] Tang J, Deng J, You X, Wang F. Forecast method for bank collapse in middle and lower Yangtze River. J Sichuan Univ 2012;44(1):75‒81.

[44] Wang YG, Kuang SF. Study on types and collapse modes of bank failures. J Sediment Res 2014;1:13‒20. 链接1

[45] Zheng S, Cheng H, Wu S, Liu G, Lu X, Xu W. Discovery and implications of catenary-bead subaqueous dunes. Sci China Earth Sci 2016;59(3):495‒502. 链接1

[46] Zheng S, Cheng H, Wu S, Shi S, Xu W, Zhou Q, et al. Morphology and mechanism of the very large dunes in the tidal reach of the Yangtze River. China. Cont Shelf Res 2017;139:54‒61. 链接1

[47] Zheng S, Cheng H, Shi S, Xu W, Zhou Q, Jiang Y, et al. Impact of anthropogenic drivers on subaqueous topographical change in the Datong to Xuliujing Reach of the Yangtze River. Sci China Earth Sci 2018;61(7):940‒50. 链接1

[48] Cheng HQ, Kostaschuk R, Shi Z. Tidal currents, bed sediments, and bedforms at the South Branch and the South Channel of the Changjiang (Yangtze) estuary, China: implications for the ripple-dune transition. Estuaries 2004;27(5):861‒6. 链接1

[49] Cheng H, Li J, Yin D, Li M, Wang B. Nearshore bedform instability in the eastern entrance to the Qiongzhou Strait, South China Sea. Front Earth Sci China 2008;2(3):283‒91. 链接1

[50] Cheng H, Teng L, Chen W. Dune dynamics in coarse silt, sand and gravel along the main channel from the estuarine front of the Yangtze River to the Three Gorges Dam. In: Proceedings of the Marine and River Dune Dynamics; 2019 Apr 1‒2; Bremen, Germany; 2019.

相关研究