期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2021年 第7卷 第10期 doi: 10.1016/j.eng.2021.04.024

纤维基质——乳腺癌检测和治疗的新途径

a Weston Park Cancer Centre, Department of Oncology and Metabolism, The Medical School, The University of Sheffield, Sheffield S10 2RX, United Kingdom
b Department of Engineering, University of Cambridge, Cambridge CB2 1PZ, United Kingdom
c Madeira Chemistry Research Center, University of Madeira, Funchal 9020105, Portugal

收稿日期: 2020-11-09 修回日期: 2021-02-28 录用日期: 2021-04-27 发布日期: 2021-08-04

下一篇 上一篇

摘要

乳腺癌的特点是肿瘤细胞周围的蛋白纤维大量增加。这些纤维会提高组织的机械硬度,人们一直以来都是利用这一点并通过手动触诊来诊断肿瘤。最近的生物工程研究开发了新型生物材料,这些材料模拟了肿瘤微环境的力学特性和结构特性,可以用来了解这些特性如何调节乳腺癌的发展和扩散。本文概述了乳腺癌组织的力学特性与正常乳腺组织及非癌性病变组织的力学特性之间的差异,描述了生物材料模型是如何用于了解细胞外环境的硬度和黏度调节细胞迁移和乳腺癌转移的。此外,本文还强调了对生物材料模型的需求,这些模型可独立分析肿瘤微环境的单个和多个力学特性并利用肿瘤内不同区域的细胞,同时为进行乳腺癌转移新型机械疗法的开发提供了指导。

参考文献

[ 1 ] Discher DE, Janmey P, Wang YL. Tissue cells feel and respond to the stiffness of their substrate. Science 2005;310(5751):1139–43. 链接1

[ 2 ] Heinrich MA, Alert R, LaChance JM, Zajdel TJ, Košmrlj A, Cohen DJ. Sizedependent patterns of cell proliferation and migration in freely-expanding epithelia. eLife 2020;9:e58945.

[ 3 ] Northcott JM, Dean IS, Mouw JK, Weaver VM. Feeling stress: the mechanics of cancer progression and aggression. Front Cell Dev Biol 2018;6:17. 链接1

[ 4 ] Kumar S, Weaver VM. Mechanics, malignancy, and metastasis: the force journey of a tumor cell. Cancer Metastasis Rev 2009;28(1–2):113–27. 链接1

[ 5 ] Butcher DT, Alliston T, Weaver VM. A tense situation: forcing tumour progression. Nat Rev Cancer 2009;9(2):108–22. 链接1

[ 6 ] Michor F, Liphardt J, Ferrari M, Widom J. What does physics have to do with cancer? Nat Rev Cancer 2011;11(9):657–70. 链接1

[ 7 ] Acerbi I, Cassereau L, Dean I, Shi Q, Au A, Park C, et al. Human breast cancer invasion and aggression correlates with ECM stiffening and immune cell infiltration. Integr Biol 2015;7(10):1120–34. 链接1

[ 8 ] Makki J. Diversity of breast carcinoma: histological subtypes and clinical relevance. Clin Med Insights Pathol 2015;8:23–31. 链接1

[ 9 ] Weigelt B, Reis-Filho JS. Histological and molecular types of breast cancer: is there a unifying taxonomy? Nat Rev Clin Oncol 2009;6(12):718–30. 链接1

[10] Tian J, Liu Q, Wang X, Xing P, Yang Z, Wu C. Application of 3D and 2D quantitative shear wave elastography (SWE) to differentiate between benign and malignant breast masses. Sci Rep 2017;7(1):41216. 链接1

[11] Chang JM, Moon WK, Cho N, Yi A, Koo HR, Han W, et al. Clinical application of shear wave elastography (SWE) in the diagnosis of benign and malignant breast diseases. Breast Cancer Res Treat 2011;129(1):89–97. 链接1

[12] Ansardamavandi A, Tafazzoli-Shadpour M, Omidvar R, Jahanzad I. Quantification of effects of cancer on elastic properties of breast tissue by atomic force microscopy. J Mech Behav Biomed Mater 2016;60:234–42. 链接1

[13] Berg WA, Mendelson EB, Cosgrove DO, Doré CJ, Gay J, Henry JP, et al. Quantitative maximum shear-wave stiffness of breast masses as a predictor of histopathologic severity. AJR Am J Roentgenol 2015;205(2):448–55. 链接1

[14] Suvannarerg V, Chitchumnong P, Apiwat W, Lertdamrongdej L, Tretipwanit N, Pisarnturakit P, et al. Diagnostic performance of qualitative and quantitative shear wave elastography in differentiating malignant from benign breast masses, and association with the histological prognostic factors. Quant Imaging Med Surg 2019;9(3):386–98. 链接1

[15] Rabin C, Benech N. Quantitative breast elastography from B-mode images. Med Phys 2019;46(7):3001–12. 链接1

[16] Barcus CE, Keely PJ, Eliceiri KW, Schuler LA. Stiff collagen matrices increase tumorigenic prolactin signaling in breast cancer cells. J Biol Chem 2013;288 (18):12722–32. 链接1

[17] Perepelyuk M, Terajima M, Wang AY, Georges PC, Janmey PA, Yamauchi M, et al. Hepatic stellate cells and portal fibroblasts are the major cellular sources of collagens and lysyl oxidases in normal liver and early after injury. Am J Physiol Gastrointest Liver Physiol 2013;304(6):G605–14. 链接1

[18] Levental KR, Yu H, Kass L, Lakins JN, Egeblad M, Erler JT, et al. Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell 2009;139(5):891–906. 链接1

[19] Provenzano PP, Inman DR, Eliceiri KW, Knittel JG, Yan L, Rueden CT, et al. Collagen density promotes mammary tumor initiation and progression. BMC Med 2008;6(1):11. 链接1

[20] Conklin MW, Eickhoff JC, Riching KM, Pehlke CA, Eliceiri KW, Provenzano PP, et al. Aligned collagen is a prognostic signature for survival in human breast carcinoma. Am J Pathol 2011;178(3):1221–32. 链接1

[21] Gierach GL, Ichikawa L, Kerlikowske K, Brinton LA, Farhat GN, Vacek PM, et al. Relationship between mammographic density and breast cancer death in the Breast Cancer Surveillance Consortium. J Natl Cancer Inst 2012;104 (16):1218–27. 链接1

[22] Fenner J, Stacer AC, Winterroth F, Johnson TD, Luker KE, Luker GD. Macroscopic stiffness of breast tumors predicts metastasis. Sci Rep 2015;4(1):5512. 链接1

[23] Chaudhuri O, Koshy ST, Branco da Cunha C, Shin JW, Verbeke CS, Allison KH, et al. Extracellular matrix stiffness and composition jointly regulate the induction of malignant phenotypes in mammary epithelium. Nat Mater 2014;13(10):970–8. 链接1

[24] Stowers RS, Shcherbina A, Israeli J, Gruber JJ, Chang J, Nam S, et al. Matrix stiffness induces a tumorigenic phenotype in mammary epithelium through changes in chromatin accessibility. Nat Biomed Eng 2019;3(12):1009–19. 链接1

[25] Berger AJ, Linsmeier KM, Kreeger PK, Masters KS. Decoupling the effects of stiffness and fiber density on cellular behaviors via an interpenetrating network of gelatin-methacrylate and collagen. Biomaterials 2017;141:125–35. 链接1

[26] Bangasser B, Rosenfeld S, Odde D. Determinants of maximal force transmission in a motor-clutch model of cell traction in a compliant microenvironment. Biophys J 2013;105(3):581–92. 链接1

[27] Wang WY, Davidson CD, Lin D, Baker BM. Actomyosin contractility-dependent matrix stretch and recoil induces rapid cell migration. Nat Commun 2019;10 (1):1186. 链接1

[28] Baker BM, Trappmann B, Wang WY, Sakar MS, Kim IL, Shenoy VB, et al. Cellmediated fibre recruitment drives extracellular matrix mechanosensing in engineered fibrillar microenvironments. Nat Mater 2015;14(12):1262–8. 链接1

[29] Matera DL, DiLillo KM, Smith MR, Davidson CD, Parikh R, Said M, et al. Microengineered 3D pulmonary interstitial mimetics highlight a critical role for matrix degradation in myofibroblast differentiation. Sci Adv 2020;6(37): eabb5069. 链接1

[30] Sinkus R, Siegmann K, Xydeas T, Tanter M, Claussen C, Fink M. MR elastography of breast lesions: understanding the solid/liquid duality can improve the specificity of contrast-enhanced MR mammography. Magn Reson Med 2007;58(6):1135–44. 链接1

[31] Wu W, Chen L, Wang Y, Jin J, Xie X, Zhang J. Hyaluronic acid predicts poor prognosis in breast cancer patients. Medicine 2020;99(22):e20438. 链接1

[32] Streitberger KJ, Sack I, Krefting D, Pfüller C, Braun J, Paul F, et al. Brain viscoelasticity alteration in chronic-progressive multiple sclerosis. PLoS ONE 2012;7(1):e29888. 链接1

[33] Wang Y, Xu C, Jiang N, Zheng L, Zeng J, Qiu C, et al. Quantitative analysis of the cell-surface roughness and viscoelasticity for breast cancer cells discrimination using atomic force microscopy. Scanning 2016;38(6):558–63. 链接1

[34] Nematbakhsh Y, Pang KT, Lim CT. Correlating the viscoelasticity of breast cancer cells with their malignancy. Converg Sci Phys Oncol 2017;3(3):034003. 链接1

[35] Harada T, Swift J, Irianto J, Shin JW, Spinler KR, Athirasala A, et al. Nuclear lamin stiffness is a barrier to 3D migration, but softness can limit survival. J Cell Biol 2014;204(5):669–82. 链接1

[36] Swift J, Discher DE. The nuclear lamina is mechano-responsive to ECM elasticity in mature tissue. J Cell Sci 2014;127(14):3005–15. 链接1

[37] Gong Z, Szczesny SE, Caliari SR, Charrier EE, Chaudhuri O, Cao X, et al. Matching material and cellular timescales maximizes cell spreading on viscoelastic substrates. Proc Natl Acad Sci USA 2018;115(12):E2686–95. 链接1

[38] Wolf K, Lindert MT, Krause M, Alexander S, Riet JT, Willis AL, et al. Physical limits of cell migration: control by ECM space and nuclear deformation and tuning by proteolysis and traction force. J Cell Biol 2013;201(7):1069–84. 链接1

[39] Wisdom KM, Adebowale K, Chang J, Lee JY, Nam S, Desai R, et al. Matrix mechanical plasticity regulates cancer cell migration through confining microenvironments. Nat Commun 2018;9(1):4144. 链接1

[40] Chaudhuri O, Cooper-White J, Janmey PA, Mooney DJ, Shenoy VB. Effects of extracellular matrix viscoelasticity on cellular behaviour. Nature 2020;584 (7822):535–46. 链接1

[41] Chaudhuri O. Viscoelastic hydrogels for 3D cell culture. Biomater Sci 2017;5 (8):1480–90. 链接1

[42] Chaudhuri O, Gu L, Klumpers D, Darnell M, Bencherif SA, Weaver JC, et al. Hydrogels with tunable stress relaxation regulate stem cell fate and activity. Nat Mater 2016;15(3):326–34. 链接1

[43] Cameron AR, Frith JE, Cooper-White JJ. The influence of substrate creep on mesenchymal stem cell behaviour and phenotype. Biomaterials 2011;32 (26):5979–93. 链接1

[44] Charrier EE, Pogoda K, Wells RG, Janmey PA. Control of cell morphology and differentiation by substrates with independently tunable elasticity and viscous dissipation. Nat Commun 2018;9(1):449. 链接1

[45] Chaudhuri O, Gu L, Darnell M, Klumpers D, Bencherif SA, Weaver JC, et al. Substrate stress relaxation regulates cell spreading. Nat Commun 2015;6: 6365. 链接1

[46] Chopra A, Murray ME, Byfield FJ, Mendez MG, Halleluyan R, Restle DJ, et al. Augmentation of integrin-mediated mechanotransduction by hyaluronic acid. Biomaterials 2014;35(1):71–82. 链接1

[47] Ranga A, Lutolf MP, Hilborn J, Ossipov DA. Hyaluronic acid hydrogels formed in situ by transglutaminase-catalyzed reaction. Biomacromolecules 2016;17 (5):1553–60. 链接1

[48] Kleine-Brüggeney H, van Vliet LD, Mulas C, Gielen F, Agley CC, Silva JCR, et al. Longterm perfusion culture of monoclonal embryonic stem cells in 3D hydrogel beads for continuous optical analysis of differentiation. Small 2019;15(5):1804576. 链接1

[49] Pavel M, Renna M, Park SJ, Menzies FM, Ricketts T, Füllgrabe J, et al. Contact inhibition controls cell survival and proliferation via YAP/TAZ-autophagy axis. Nat Commun 2018;9(1):2961. 链接1

[50] Rezk R, Jia BZ, Wendler A, Dimov I, Watts C, Markaki AE, et al. Spatial heterogeneity of cell-matrix adhesive forces predicts human glioblastoma migration. Neurooncol Adv 2020;2(1):vdaa081.

[51] Grundy TJ, De Leon E, Griffin KR, Stringer BW, Day BW, Fabry B, et al. Differential response of patient-derived primary glioblastoma cells to environmental stiffness. Sci Rep 2016;6(1):23353. 链接1

[52] Plodinec M, Loparic M, Monnier CA, Obermann EC, Zanetti-Dallenbach R, Oertle P, et al. The nanomechanical signature of breast cancer. Nat Nanotechnol 2012;7(11):757–65. 链接1

[53] Swaminathan V, Mythreye K, O’Brien ET, Berchuck A, Blobe GC, Superfine R. Mechanical stiffness grades metastatic potential in patient tumor cells and in cancer cell lines. Cancer Res 2011;71(15):5075–80. 链接1

[54] Kenny PA, Bissell MJ. Tumor reversion: correction of malignant behavior by microenvironmental cues. Int J Cancer 2003;107(5):688–95. 链接1

[55] Berger AJ, Renner CM, Hale I, Yang X, Ponik SM, Weisman PS, et al. Scaffold stiffness influences breast cancer cell invasion via EGFR-linked Mena upregulation and matrix remodeling. Matrix Biol 2020;85–86:80–93. 链接1

相关研究