期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2022年 第8卷 第1期 doi: 10.1016/j.eng.2021.04.028

钠超离子导体型固体电解质的改性及其在钠离子电池中的应用

a Key Laboratory for Renewable Energy, Beijing Key Laboratory for New Energy Materials and Devices, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
b Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
c Xiamen Institute of Rare-Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen 361021, China
d State Key Laboratory of Physical Chemistry of Solid Surfaces & Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
e HiNa Battery Technology Co., Ltd., Liyang 213300, China
f Yangtze River Delta Physics Research Center Co., Ltd., Liyang 213300, China

# These authors contributed equally to this work.

收稿日期: 2020-05-06 修回日期: 2020-08-24 录用日期: 2020-09-14 发布日期: 2021-08-24

下一篇 上一篇

摘要

固体电解质的低离子电导率及固体电解质与固态电极之间较差的界面可靠性是阻碍固态钠电池(SSSB)应用的两大紧迫挑战。本文采用简单的两步固相法合成了名义成分为Na3+2xZr2‒xMgxSi2PO12 的钠(Na)超离子导体(NASICON)型固体电解质,其中在25 ℃时Na3.3Zr1.85Mg0.15Si2PO12x=0.15, NZSP-Mg0.15)表现出了3.54 mS∙cm‒1的最高离子电导率。通过深入研究,本文证实晶界成分在决定NASICON总离子电导率中起着至关重要的作用。此外,由于文献中缺乏关于NASICON是否能够提供足够的阳极电化学稳定性来实现高压固态钠电池的研究,我们首先使用了高压Na3(VOPO4)2F (NVOPF)正极来验证其与优化后的NZSP-Mg0.15固体电解质之间的兼容性。通过比较不同配置(低压阴极与高压阴极、液态电解质与固体电解质)电池的电化学性能,以及对循环后的NZSP-Mg0.15进行X射线光电子能谱(XPS)评估,结果表明,NASICON固体电解质在高电压下不够稳定,这证明了研究NASICON固体电解质和高压阴极之间界面的重要性。此外,通过将NZSP-Mg0.15 NASICON 粉末涂在聚乙烯(PE)隔膜(PE@NASICON)上,形成了2.42 A∙h 的碳|PE@NASICON|NaNi2/9Cu1/9Fe1/3Mn1/3O2 非水系钠离子电池,其具有出色的循环性能,在2000 周循环后容量保持率为88%,从而证明涂有NASICON型固体电解质的隔膜具有高可靠性。

图片

图1

图2

图3

图4

图5

图6

图7

图8

图9

参考文献

[ 1 ] Zhao S, Qin B, Chan KY, Li CY, Li F. Recent development of aprotic Na–O2 batteries. Batter Supercaps 2019;2(9):725–42. 链接1

[ 2 ] Lang J, Li J, Zhang F, Ding X, Zapien JA, Tang Y. Sodium-ion hybrid battery combining an anion-intercalation cathode with an adsorption-type anode for enhanced rate and cycling performance. Batter Supercaps 2019;2(5):440–7. 链接1

[ 3 ] Zhao C, Lu Y, Chen L, Hu YS. Flexible Na batteries. InfoMat 2020;2(1):126–38. 链接1

[ 4 ] Lin Z, Xia Q, Wang W, Li W, Chou S. Recent research progresses in ether- and ester-based electrolytes for sodium-ion batteries. InfoMat 2019;1(3):376–89. 链接1

[ 5 ] Hu YS, Lu Y. 2019 Nobel Prize for the Li-ion batteries and new opportunities and challenges in Na-ion batteries. ACS Energy Lett 2019;4(11):2689–90. 链接1

[ 6 ] Li Y, Yang Y, Lu Y, Zhou Q, Qi X, Meng Q, et al. Ultralow-concentration electrolyte for Na-ion batteries. ACS Energy Lett 2020;5(4):1156–8. 链接1

[ 7 ] Eshetu GG, Elia GA, Armand M, Forsyth M, Komaba S, Rojo T, et al. Electrolytes and interphases in sodium-based rechargeable batteries: recent advances and perspectives. Adv Energy Mater 2020;10(20):2000093. 链接1

[ 8 ] Hu Pu, Wang X, Ma J, Zhang Z, He J, Wang X, et al. NaV3(PO4)3/C nanocomposite as novel anode material for Na-ion batteries with high stability. Nano Energy 2016;26:382–91. 链接1

[ 9 ] Hu P, Wang X, Wang T, Chen L, Ma J, Kong Q, et al. Boron substituted Na3V2(P1xBxO4)3 cathode materials with enhanced performance for sodiumion batteries. Adv Sci 2016;3(12):1600112. Correction in: Adv Sci 2017;4(2).

[10] Wang Y, Song S, Xu C, Hu N, Molenda J, Lu Li. Development of solid-state electrolytes for sodium-ion battery—a short review. Nano Mater Sci 2019;1 (2):91–100. 链接1

[11] Huang Y, Zhao L, Li L, Xie M, Wu F, Chen R. Electrolytes and electrolyte/electrode interfaces in sodium-ion batteries: from scientific research to practical application. Adv Mater 2019;31(21):1808393. 链接1

[12] Liu L, Qi X, Yin S, Zhang Q, Liu X, Suo L, et al. In situ formation of a stable interface in solid-state batteries. ACS Energy Lett 2019;4(7):1650–7. 链接1

[13] Qiao L, Judez X, Rojo T, Armand M, Zhang H. Review—polymer electrolytes for sodium batteries. J Electrochem Soc 2020;167(7):070534. 链接1

[14] Zhou C, Bag S, Thangadurai V. Engineering materials for progressive all-solidstate Na batteries. ACS Energy Lett 2018;3(9):2181–98. 链接1

[15] Zhao C, Liu L, Qi X, Lu Y, Wu F, Zhao J, et al. Solid-state sodium batteries. Adv Energy Mater 2018;8(17):1703012.

[16] Lu Y, Li L, Zhang Q, Niu Z, Chen J. Electrolyte and interface engineering for solid-state sodium batteries. Joule 2018;2(9):1747–70. 链接1

[17] Hou W, Guo X, Shen X, Amine K, Yu H, Lu J. Solid electrolytes and interfaces in all-solid-state sodium batteries: progress and perspective. Nano Energy 2018;52:279–91. 链接1

[18] Zhang XQ, Zhao CZ, Huang JQ, Zhang Q. Recent advances in energy chemical engineering of next-generation lithium batteries. Engineering 2018;4 (6):831–47. 链接1

[19] Goodenough JB, Hong HYP, Kafalas JA. Fast Na+ -ion transport in skeleton structures. Mater Res Bull 1976;11(2):203–20. 链接1

[20] Hong HYP. Crystal structures and crystal chemistry in the system Na1+xZr2SixP3xO12. Mater Res Bull 1976;11(2):173–82. 链接1

[21] Zhang Z, Shao Y, Lotsch B, Hu YS, Li H, Janek J, et al. New horizons for inorganic solid state ion conductors. Energy Environ Sci 2018;11(8):1945–76. 链接1

[22] Jalalian-Khakshour A, Phillips CO, Jackson L, Dunlop TO, Margadonna S, Deganello D. Solid-state synthesis of NASICON (Na3Zr2Si2PO12) using nanoparticle precursors for optimisation of ionic conductivity. J Mater Sci 2020;55(6):2291–302. 链接1

[23] Shao Y, Zhong G, Lu Y, Liu L, Zhao C, Zhang Q, et al. A novel NASICON-based glass–ceramic composite electrolyte with enhanced Na-ion conductivity. Energy Storage Mater 2019;23:514–21. 链接1

[24] Lan T, Tsai CL, Tietz F, Wei XK, Heggen M, Dunin-Borkowski RE, et al. Roomtemperature all-solid-state sodium batteries with robust ceramic interface between rigid electrolyte and electrode materials. Nano Energy 2019;65:104040. 链接1

[25] Lee JS, Chang CM, Lee YIL, Lee JH, Hong SH. Spark plasma sintering (SPS) of NASICON ceramics. J Am Ceram Soc 2004;87(2):305–7.

[26] Zhang Z, Zhang Q, Shi J, Chu YS, Yu X, Xu K, et al. A self-forming composite electrolyte for solid-state sodium battery with ultralong cycle life. Adv Energy Mater 2017;7(4):1601196. 链接1

[27] Noi K, Suzuki K, Tanibata N, Hayashi A, Tatsumisago M. Liquid-phase sintering of highly Na+ ion conducting Na3Zr2Si2PO12 ceramics using Na3BO3 additive. J Am Ceram Soc 2018;101(3):1255–65. 链接1

[28] Yang J, Wan HL, Zhang ZH, Liu GZ, Xu XX, Hu YS, et al. NASICON-structured Na3.1Zr1.95Mg0.05Si2PO12 solid electrolyte for solid-state sodium batteries. Rare Met 2018;37(6):480–7. 链接1

[29] Samiee M, Radhakrishnan B, Rice Z, Deng Z, Meng YS, Ong SP, et al. Divalentdoped Na3Zr2Si2PO12 natrium superionic conductor: improving the ionic conductivity via simultaneously optimizing the phase and chemistry of the primary and secondary phases. J Power Sources 2017;347:229–37. 链接1

[30] Hu YS. Batteries: getting solid. Nat Energy 2016;1(4):16042. 链接1

[31] Song S, Duong HM, Korsunsky AM, Hu N, Lu L. A Na+ superionic conductor for room-temperature sodium batteries. Sci Rep 2016;6(1):32330. 链接1

[32] Yu X, Manthiram A. Sodium–sulfur batteries with a polymer-coated NASICONtype sodium-ion solid electrolyte. Matter 2019;1(2):439–51. 链接1

[33] Zhou W, Li Y, Xin S, Goodenough JB. Rechargeable sodium all-solid-state battery. ACS Cent Sci 2017;3(1):52–7. 链接1

[34] Fu H, Yin Q, Huang Y, Sun H, Chen Y, Zhang R, et al. Reducing interfacial resistance by Na–SiO2 composite anode for NASICON-based solid-state sodium battery. ACS Mater Lett 2020;2(2):127–32. 链接1

[35] Lu Y, Alonso JA, Yi Q, Lu L, Wang ZL, Sun C. A high-performance monolithic solid-state sodium battery with Ca2+ doped Na3Zr2Si2PO12 electrolyte. Adv Energy Mater 2019;9(28):1901205. 链接1

[36] Matios E, Wang H, Wang C, Hu X, Lu X, Luo J, et al. Graphene regulated ceramic electrolyte for solid-state sodium metal battery with superior electrochemical stability. ACS Appl Mater Interfaces 2019;11(5):5064–72. 链接1

[37] Miao X, Di H, Ge X, Zhao D, Wang P, Wang R, et al. AlF3-modified anodeelectrolyte interface for effective Na dendrites restriction in NASICON-based solid-state electrolyte. Energy Storage Mater 2020;30:170–8. 链接1

[38] Uchida Y, Hasegawa G, Shima K, Inada M, Enomoto N, Akamatsu H, et al. Insights into sodium ion transfer at the Na/NASICON interface improved by uniaxial compression. ACS Appl Energy Mater 2019;2(4):2913–20. 链接1

[39] Noguchi Y, Kobayashi E, Plashnitsa LS, Okada S, Yamaki JI. Fabrication and performances of all solid-state symmetric sodium battery based on NASICONrelated compounds. Electrochim Acta 2013;101:59–65. 链接1

[40] Lalère F, Leriche JB, Courty M, Boulineau S, Viallet V, Masquelier C, et al. An allsolid state NASICON sodium battery operating at 200 C. J Power Sources 2014;247:975–80. 链接1

[41] Ruan Y, Guo F, Liu J, Song S, Jiang N, Cheng B. Optimization of Na3Zr2Si2PO12 ceramic electrolyte and interface for high performance solid-state sodium battery. Ceram Int 2019;45(2):1770–6. 链接1

[42] Gao H, Xue L, Xin S, Park K, Goodenough JB. A plastic-crystal electrolyte interphase for all-solid-state sodium batteries. Angew Chem Int Ed Engl 2017;56(20):5541–5. 链接1

[43] Gao H, Xin S, Xue L, Goodenough JB. Stabilizing a high-energy-density rechargeable sodium battery with a solid electrolyte. Chem 2018;4(4): 833–44. 链接1

[44] Kehne P, Guhl C, Ma Q, Tietz F, Alff L, Hausbrand R, et al. Electrochemical performance of all-solid-state sodium-ion model cells with crystalline NaxCoO2 thin-film cathodes. J Electrochem Soc 2019;166(3):A5328–32. 链接1

[45] Kehne P, Guhl C, Ma Q, Tietz F, Alff L, Hausbrand R, et al. Sc-substituted Nasicon solid electrolyte for an all-solid-state NaxCoO2/Nasicon/Na sodium model battery with stable electrochemical performance. J Power Sources 2019;409:86–93. 链接1

[46] Zhan C, Wu T, Lu J, Amine K. Dissolution, migration, and deposition of transition metal ions in Li-ion batteries exemplified by Mn-based cathodes—a critical review. Energy Environ Sci 2018;11(2):243–57. 链接1

[47] Zhang Q, Gu QF, Li Y, Fan HN, Luo WB, Liu HK, et al. Surface stabilization of O3- type layered oxide cathode to protect the anode of sodium ion batteries for superior lifespan. iScience 2019;19:244–54. 链接1

[48] Yan Z, Pan H, Wang J, Chen R, Luo F, Yu X, et al. Suppressing transition metal dissolution and deposition in lithium-ion batteries using oxide solid electrolyte coated polymer separator. Chin Phys B 2020;29(8):088201. 链接1

[49] Qi XG, Zhou Q, Tang K, Hu YS, inventors; HiNa Battery Technology Co., Ltd., assignee. [Ceramic separator and sodium ion secondary battery for sodium ion battery and its application]. Chinese Patent CN109244314A. 2019 Jan 18. Chinese.

[50] Qi Y, Zhao J, Yang C, Liu H, Hu Y. Comprehensive studies on the hydrothermal strategy for the synthesis of Na3(VO1xPO4)2F1+2x (0 x 1) and their Nastorage performance. Small Methods 2019;3(4):1800111. 链接1

[51] Zhang Q, Lu Y, Yu H, Yang G, Liu Q, Wang Z, et al. PEO-NaPF6 blended polymer electrolyte for solid state sodium battery. J Electrochem Soc 2020;167 (7):070523. 链接1

[52] Tsai CL, Hong HYP. Investigation of phases and stability of solid electrolytes in the NASICON system. Mater Res Bull 1983;18(11):1399–407. 链接1

[53] Takahashi T, Kuwabara K, Shibata M. Solid-state ionics—conductivities of Na+ ion conductors based on NASICON. Solid State Ion 1980;1(3–4):163–75.

[54] Vonalpen U, Bell M, Hofer H. Compositional dependence of the electrochemical and structural parameters in the Nasicon system (Na1+xSixZr2P3xO12). Solid State Ion 1981;3-4:215–8. 链接1

[55] Fuentes RO, Figueiredo FM, Marques FMB, Franco JI. Processing and electrical properties of NASICON prepared from yttria-doped zirconia precursors. J Eur Ceram Soc 2001;21(6):737–43. 链接1

[56] Fuentes R. Influence of microstructure on the electrical properties of NASICON materials. Solid State Ion 2001;140(1–2):173–9. 链接1

[57] Naqash S, Sebold D, Tietz F, Guillon O. Microstructure–conductivity relationship of Na3Zr2(SiO4)2(PO4) ceramics. J Am Ceram Soc 2019;102 (3):1057–70. 链接1

[58] Guin M, Tietz F, Guillon O. New promising NASICON material as solid electrolyte for sodium-ion batteries: correlation between composition, crystal structure and ionic conductivity of Na3+xSc2SixP3xO12. Solid State Ion 2016;293:18–26. 链接1

[59] Deng Y, Eames C, Nguyen LHB, Pecher O, Griffith KJ, Courty M, et al. Crystal structures, local atomic environments, and ion diffusion mechanisms of scandium-substituted sodium superionic conductor (NASICON). Chem Mater 2018;30(8):2618–30.

[60] Ben Bechir M, Ben Rhaiem A. The sodium-ion battery: study of alternative current conduction mechanisms on the Na3PO4-based solid electrolyte. Physica E 2020;120:114032. 链接1

[61] Irvine JTS, Sinclair DC, West AR. Electroceramics: characterization by impedance spectroscopy. Adv Mater 1990;2(3):132–8.

[62] Kim JH, Oh TS, Lee MS, Park JG, Kim YH. Effects of Al2O3 addition on the sinterability and ionic conductivity of nasicon. J Mater Sci 1993;28(6): 1573–7. 链接1

[63] Wang S, Xu H, Li W, Dolocan A, Manthiram A. Interfacial chemistry in solidstate batteries: formation of interphase and its consequences. J Am Chem Soc 2018;140(1):250–7. 链接1

[64] Tang H, Deng Z, Lin Z, Wang Z, Chu IH, Chen C, et al. Probing solid–solid interfacial reactions in all-solid-state sodium-ion batteries with firstprinciples calculations. Chem Mater 2018;30(1):163–73. 链接1

[65] Lacivita V, Wang Y, Bo SH, Ceder G. Ab initio investigation of the stability of electrolyte/electrode interfaces in all-solid-state Na batteries. J Mater Chem A Mater Energy Sustain 2019;7(14):8144–55. 链接1

相关研究