期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2022年 第19卷 第12期 doi: 10.1016/j.eng.2021.04.029

长江上游干暖河谷地区气候和土地利用变化的水文响应

a State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
b Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China
c Department of Civil Engineering, McMaster University, Hamilton, ON, L8S 4L7, Canada
d Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
e Chengdu University of Information Technology, Chengdu 610225, China

收稿日期: 2020-06-04 修回日期: 2021-01-02 录用日期: 2021-04-16 发布日期: 2021-10-20

下一篇 上一篇

摘要

中国西南山区干暖河谷的水文过程具有独特的特点,已引起世界科学界的广泛关注。鉴于该地区是长江上游生态系统脆弱和水资源冲突严重的地区,需系统地识别气候和土地利用变化的水文响应。本研究以安宁河流域的干暖河谷为研究对象,采用MIKE SHE模型进行校准。随后,利用长短期记忆网络模型(LSTM)和传统多模式集成均值(MMEM)方法对31个全球气候模式(GCM)进行气候预测。采用元胞自动机-马尔可夫模型,综合考虑气候、社会和经济条件等,对土地利用的空间格局进行预测。将生成的4组气候预测和3组土地利用预测数据交叉输入MIKE SHE模型,以预测2021—2050年的水文响应变化。针对日尺度模拟的率定期和第一个验证期,决定性系数(R)分别为0.85和0.87,纳什效率系数分别为0.72和0.73;先进的LSTM方法对日尺度气温和月尺度降水的预测效果优于传统的MMEM方法;RCP8.5下的月平均气温预测值略高于RCP4.5,这与6~10月月平均降水量的变化相反;径流量和实际蒸散发(ET)的变化对气候变化的敏感性高于对土地利用变化的敏感性;研究区径流量变化与ET变化无显著相关性。本研究可以提供复杂变化环境下的一系列水文响应,从而有助于关键地区水资源随机不确定性和优化管理。

图片

图1

图2

图3

图4

图5

图6

图7

图8

图9

图10

图11

参考文献

[ 1 ] Basheer AK, Lu H, Omer A, Ali AB, Abdelgader AMS. Impacts of climate change under CMIP5 RCP scenarios on the streamflow in the Dinder River and ecosystem habitats in Dinder National Park, Sudan. Hydrol Earth Syst Sci 2016;20(4):1331‒53. 链接1

[ 2 ] Setegn SG, Rayner D, Melesse AM, Dargahi B, Srinivasan R. Impact of climate change on the hydroclimatology of Lake Tana Basin, Ethiopia. Water Resour Res 2011;47(4):W04511. 链接1

[ 3 ] Zipper SC, Motew M, Booth EG, Chen Xi, Qiu J, Kucharik CJ, et al. Continuous separation of landuse and climate effects on the past and future water balance. J Hydrol 2018;565:106‒22. 链接1

[ 4 ] Sunde MG, He HS, Hubbart JA, Urban MA. Integrating downscaled CMIP5 data with a physically based hydrologic model to estimate potential climate change impacts on streamflow processes in a mixed-use watershed. Hydrol Process 2017;31(9):1790‒803. 链接1

[ 5 ] Guo Y, Shen Y. Agricultural water supply/demand changes under projected future climate change in the arid region of northwestern China. J Hydrol 2016;540:257‒73. 链接1

[ 6 ] Wagena MB, Sommerlot A, Abiy AZ, Collick AS, Langan S, Fuka DR, et al. Climate change in the Blue Nile Basin Ethiopia: implications for water resources and sediment transport. Clim Change 2016;139(2):229‒43. 链接1

[ 7 ] Tan Q, Huang GH, Cai YP. Identification of optimal plans for municipal solid waste management in an environment of fuzziness and two-layer randomness. Stochastic Environ Res Risk Assessment 2010;24 (1):147‒64. 链接1

[ 8 ] Dong C, Tan Q, Huang GH, Cai YP. A dual-inexact fuzzy stochastic model for water resources management and non-point source pollution mitigation under multiple uncertainties. Hydrol Earth Syst Sci 2014;18(5):1793‒803. 链接1

[ 9 ] Sun S, Chen H, Ju W, Hua W, Yu M, Yin Y. Assessing the future hydrological cycle in the Xinjiang Basin, China, using a multi-model ensemble and SWAT model. Int J Climatol 2014;34(9):2972‒87. 链接1

[10] Asong ZE, Khaliq MN, Wheater HS. Projected changes in precipitation and temperature over the Canadian Prairie Provinces using the Generalized Linear Model statistical downscaling approach. J Hydrol 2016;539:429‒46. 链接1

[11] Huang T, Yu D, Cao Q, Qiao J. Impacts of meteorological factors and landuse pattern on hydrological elements in a semi-arid basin. Sci Total Environ 2019;690:932‒43. 链接1

[12] Wilby RL, Harris I. A framework for assessing uncertainties in climate change impacts: low-flow scenarios for the River Thames, UK. Water Resour Res 2006;42(2):W02419. 链接1

[13] Ahiablame L, Sinha T, Paul M, Ji JH, Rajib A. Streamflow response to potential landuse and climate changes in the James River watershed, Upper Midwest United States. J Hydrol 2017;14:150‒66. 链接1

[14] Morán-Tejeda E, Zabalza J, Rahman K, Gago-Silva A, López-Moreno JI, Vicente- Serrano S, et al. Hydrological impacts of climate and land-use changes in a mountain watershed: uncertainty estimation based on model comparison. Ecohydrology 2015;8(8):1396‒416. 链接1

[15] Ji P, Yuan X. High-resolution land surface modeling of hydrological changes over the Sanjiangyuan Region in the Eastern Tibetan Plateau: 2. impact of climate and land cover change. J Adv Model Earth Syst 2018;10 (11):2829‒43. 链接1

[16] Sun Y, Tian F, Yang L, Hu H. Exploring the spatial variability of contributions from climate variation and change in catchment properties to streamflow decrease in a mesoscale basin by three different methods. J Hydrol 2014;508:170‒80. 链接1

[17] Merz R, Parajka J, Bloeschl G. Time stability of catchment model parameters: implications for climate impact analyses. Water Resour Res 2011;47:1‒17. 链接1

[18] Luo J, Wang E, Shen S, Zheng H, Zhang Y. Effects of conditional parameterization on performance of rainfall-runoff model regarding hydrologic non-stationarity. HyPr 2012;26(26):3953‒61. 链接1

[19] Silberstein RP, Aryal SK, Durrant J, Pearcey M, Braccia M, Charles SP, et al. Climate change and runoff in south-western Australia. J Hydrol 2012;475:441‒55. 链接1

[20] Kouhestani S, Eslamian SS, Abedi-Koupai J, Besalatpour AA. Projection of climate change impacts on precipitation using soft-computing techniques: a case study in Zayandeh-rud Basin, Iran. Glob Planet Change 2016;144:158‒70. 链接1

[21] Mehrotra R, Sharma A, Nagesh Kumar D, Reshmidevi TV. Assessing future rainfall projections using multiple GCMs and a multi-site stochastic downscaling model. J Hydrol 2013;488:84‒100. 链接1

[22] Sehgal V, Lakhanpal A, Maheswaran R, Khosa R, Sridhar V. Application of multi-scale wavelet entropy and multi-resolution Volterra models for climatic downscaling. J Hydrol 2018;556:1078‒95. 链接1

[23] Tan Q, Huang GH, Wu CZ, Cai YP, Yan XP. Development of an inexact fuzzy robust programming model for integrated evacuation management under uncertainty. J Urban Plann Dev 2009;135(1):39‒49. 链接1

[24] Tan Q, Huang GH, Cai YP. A superiority-inferiority-based inexact fuzzy stochastic programming approach for solid waste management under uncertainty. Environ Model Asses 2010;15(5):381‒96. 链接1

[25] Knutti R, Furrer R, Tebaldi C, Cermak J, Meehl GA. Challenges in combining projections from multiple climate models. J Clim 2010;23 (10):2739‒58. 链接1

[26] Hochreiter S, Schmidhuber J. Long short-term memory. Neural Comput 1997;9(8):1735‒80. 链接1

[27] Zhang Q, Wang H, Dong JY, Zhong GQ, Sun X. Prediction of sea surface temperature using long short-term memory. IEEE Geosci Remote Sens Lett 2017;14(10):1745‒9. 链接1

[28] LeCun Y, Bengio Y, Hinton G. Deep learning. Nature 2015;521(7553):436‒44. 链接1

[29] Sonkoue D, Monkam D, Fotso-Nguemo TC, Yepdo ZD, Vondou DA. Evaluation and projected changes in daily rainfall characteristics over Central Africa based on a multi-model ensemble mean of CMIP5 simulations. Theor Appl Clim 2019;137(3‒4):2167‒86.

[30] Rong Q, Zeng J, Su M, Yue W, Xu C, Cai Y. Management optimization of nonpoint source pollution considering the risk of exceeding criteria under uncertainty. Sci Total Environ 2021;758:143659. 链接1

[31] Zhu R, Yang L, Liu T, Wen X, Zhang L, Chang Y. Hydrological responses to the future climate change in a data scarce region, northwest China: application of machine learning models. Water 2019;11(8):1‒19. 链接1

[32] Cai YP, Huang GH, Yang ZF, Tan Q. Identification of optimal strategies for energy management systems planning under multiple uncertainties. Appl Energy 2009;86(4):480‒95. 链接1

[33] Wang Y, Li X, Zhang Q, Li J, Zhou X. Projections of future land use changes: Multiple scenarios-based impacts analysis on ecosystem services for Wuhan city, China. Ecol Indic 2018;94:430‒45. 链接1

[34] Hishe S, Bewket W, Nyssen J, Lyimo J. Analysing past landuse land cover change and CA‒Markov-based future modelling in the Middle Suluh Valley, northern Ethiopia. Geocarto Int 2020;35(3):225‒55. 链接1

[35] Yan R, Cai Y, Li C, Wang X, Liu Q. Hydrological responses to climate and landuse changes in a watershed of the Loess Plateau, China. Sustainability 2019;11 (5):1443. 链接1

[36] Shao H, Liu M, Shao Q, Sun X, Wu J, Xiang Z, et al. Research on ecoenvironmental vulnerability evaluation of the Anning River Basin in the upper reaches of the Yangtze River. Environ Earth Sci 2014;72(5):1555‒68. 链接1

[37] Zhang D, Zhang Q, Qiu J, Bai P, Liang K, Li X. Intensification of hydrological drought due to human activity in the middle reaches of the Yangtze River, China. Sci Total Environ 2018;637‒638:1432‒42.

[38] Zhang JP, Yang Z, Wang DJ, Zhang XB. Climate change and causes in the Yuanmou dry‒hot valley of Yunnan, China. J Arid Environ 2002;51 (1):153‒62. 链接1

[39] Abbott MB, Bathurst JC, Cunge JA, Oconnell PE, Rasmussen J. An introduction to the European hydrological system—systeme hydrologique europeen, SHE. 1: history and philosophy of a physically-based, distributed modeling system. J Hydrol 1986;87(1‒2):45‒59.

[40] Zhang Z, Wang S, Sun G, McNulty SG, Zhang H, Li J, et al. Evaluation of the MIKE SHE model for application in the Loess Plateau, China. J Am Water Resour As 2008;44(5):1108‒20. 链接1

[41] Thompson JR, Sorenson HR, Gavin H, Refsgaard A. Application of the coupled MIKE SHE/MIKE 11 modelling system to a lowland wet grassland in southeast England. J Hydrol 2004;293(1‒4):151‒79.

[42] Christiaens K, Feyen J. Constraining soil hydraulic parameter and output uncertainty of the distributed hydrological MIKE SHE model using the GLUE framework. Hydrol Process 2002;16(2):373‒91. 链接1

[43] Ebel BA. Simulated unsaturated flow processes after wildfire and interactions with slope aspect. Water Resour Res 2013;49(12):8090‒107. 链接1

[44] McMichael CE, Hope AS. Predicting streamflow response to fire-induced landcover change: implications of parameter uncertainty in the MIKE SHE model. J Environ Manage 2007;84(3):245‒56. 链接1

[45] Stisen S, Jensen KH, Sandholt I, Grimes DIF. A remote sensing driven distributed hydrological model of the Senegal River basin. J Hydrol 2008;354(1‒4):131‒48.

[46] Thompson JR. Modelling the impacts of climate change on upland catchments in southwest Scotland using MIKE SHE and the UKCP09 probabilistic projections. Hydrol Res 2012;43(4):507‒30. 链接1

[47] Wijesekara GN, Farjad B, Gupta A, Qiao Y, Delaney P, Marceau DJ. A comprehensive land-use/hydrological modeling system for scenario simulations in the Elbow River Watershed, Alberta, Canada. Environ Manage 2014;53(2):357‒81. 链接1

[48] Thompson JR, Green AJ, Kingston DG, Gosling SN. Assessment of uncertainty in river flow projections for the Mekong River using multiple GCMs and hydrological models. J Hydrol 2013;486:1‒30. 链接1

[49] Guo D, Westra S, Maier HR. An R package for modelling actual, potential and reference evapotranspiration. Environ Model Software 2016;78:216‒24. 链接1

[50] Wang S, Zhang Z, Sun G, Strauss P, Guo J, Tang Y, et al. Multi-site calibration, validation, and sensitivity analysis of the MIKE SHE Model for a large watershed in northern China. Hydrol Earth Syst Sci 2012;16(12):4621‒32. 链接1

[51] Wijesekara GN, Gupta A, Valeo C, Hasbani JG, Qiao Y, Delaney P, et al. Assessing the impact of future land-use changes on hydrological processes in the Elbow River watershed in southern Alberta, Canada. J Hydrol 2012;412‒413:220‒32.

[52] Liu DL, Zuo HP. Statistical downscaling of daily climate variables for climate change impact assessment over New South Wales, Australia. Clim Change 2012;115(3‒4):629‒66.

[53] Meinshausen M, Smith SJ, Calvin K, Daniel JS, Kainuma MLT, Lamarque JF, et al. The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Clim Change 2011;109(1‒2):213‒41.

[54] Wu H, Li Z, Clarke KC, Shi W, Fang L, Lin A, et al. Examining the sensitivity of spatial scale in cellular automata Markov chain simulation of landuse change. Int J Geogr Inf Sci 2019;33(5):1040‒61. 链接1

[55] Ma N, Szilagyi J, Zhang YS, Liu WB. Complementary-relationship-based modeling of terrestrial evapotranspiration across China during 1982‍‒‍2012: validations and spatiotemporal analyses. J Geophys Res-Atmos 2019;‍124:4326‒51. 链接1

[56] Li C, Cai Y, Tan Q, Wang X, Li C, Liu Q, et al. An integrated simulationoptimization modeling system for water resources management under coupled impacts of climate and landuse variabilities with priority in ecological protection. Adv Water Resour 2021;154:103986. 链接1

[57] Yan J, Smith KR. Simulation of integrated surface water and ground water systems—model formulation. Water Resour Bull 1994;30(5):879‒90. 链接1

相关研究