期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2022年 第9卷 第2期 doi: 10.1016/j.eng.2021.05.016

湿地芦苇根系微生物群落组成与环境应用

a Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
b University of Chinese Academy of Sciences, Beijing 100049, China

收稿日期: 2020-12-16 修回日期: 2021-04-28 录用日期: 2021-05-06 发布日期: 2021-08-10

下一篇 上一篇

摘要

芦苇是自然界广泛存在的湿地植物。在人工湿地中,约15.5%的种植植物是芦苇,其在废水水质净化中起到重要的作用。尽管如此,对芦苇根系微生物群落的基本组成及每一类微生物在污染物去除中的作用仍不清晰。本文总结了已有对芦苇根系微生物群落(包括细菌、古菌及真菌)在生态及生化方面的研究。基于下一代测序,对不同环境条件下的微生物群落组成进行了分析。此外,利用培养方法进一步研究了微生物群落的功能特征,如铁的固定、有机物的降解、营养元素的转化等。芦苇根系微生物群落独特的结构和功能受芦苇种类及盐度等环境因素的高度影响。基于现有对芦苇根系微生物群落的研究,我们建议在人工湿地中应用和强化合成微生物群落和铁锰氧化物基质,以提高湿地的水净化性能。

图片

图1

图2

参考文献

[ 1 ] Bai J, Cui B, Cao H, Li A, Zhang B. Wetland degradation and ecological restoration. Sci World J 2013;2013:1–2. 链接1

[ 2 ] Stottmeister U, Wießner A, Kuschk P, Kappelmeyer U, Kästner M, Bederski O, et al. Effects of plants and microorganisms in constructed wetlands for wastewater treatment. Biotechnol Adv 2003;22(1–2):93–117. 链接1

[ 3 ] Wu S, Kuschk P, Brix H, Vymazal J, Dong R. Development of constructed wetlands in performance intensifications for wastewater treatment: a nitrogen and organic matter targeted review. Water Res 2014;57:40–55. 链接1

[ 4 ] Wu H, Zhang J, Ngo HH, Guo W, Hu Z, Liang S, et al. A review on the sustainability of constructed wetlands for wastewater treatment: design and operation. Bioresour Technol 2015;175:594–601. 链接1

[ 5 ] Zheng Y, Yang D, Dzakpasu M, Yang Q, Liu Y, Zhang H, et al. Effects of plants competition on critical bacteria selection and pollutants dynamics in a longterm polyculture constructed wetland. Bioresour Technol 2020;316:123927. 链接1

[ 6 ] Srivastava JK, Chandra H, Kalra SJS, Mishra P, Khan H, Yadav P. Plant–microbe interaction in aquatic system and their role in the management of water quality: a review. Appl Water Sci 2017;7(3):1079–90. 链接1

[ 7 ] Zhang L, Lyu T, Zhang Y, Button M, Arias CA, Weber KP, et al. Impacts of design configuration and plants on the functionality of the microbial community of mesocosm-scale constructed wetlands treating ibuprofen. Water Res 2018;131:228–38. 链接1

[ 8 ] Saravanan A, Jeevanantham S, Narayanan VA, Kumar PS, Yaashikaa PR, Muthu CMM. Rhizoremediation—a promising tool for the removal of soil contaminants: a review. J Environ Chem Eng 2020;8(2):103543. 链接1

[ 9 ] Rodriguez PA, Rothballer M, Chowdhury SP, Nussbaumer T, Gutjahr C, FalterBraun P. Systems biology of plant–microbiome interactions. Mol Plant 2019;12(6):804–21. 链接1

[10] Berendsen RL, Pieterse CMJ, Bakker PAHM. The rhizosphere microbiome and plant health. Trends Plant Sci 2012;17(8):478–86. 链接1

[11] Fitzpatrick CR, Salas-González I, Conway JM, Finkel OM, Gilbert S, Russ D, et al. The plant microbiome: from ecology to reductionism and beyond. Annu Rev Microbiol 2020;74(1):81–100. 链接1

[12] Finkel OM, Castrillo G, Herrera Paredes S, Salas González I, Dangl JL. Understanding and exploiting plant beneficial microbes. Curr Opin Plant Biol 2017;38:155–63. 链接1

[13] Hartman K, van der Heijden MGA, Roussely-Provent V, Walser JC, Schlaeppi K. Deciphering composition and function of the root microbiome of a legume plant. Microbiome 2017;5(1):2. 链接1

[14] Trivedi P, Leach JE, Tringe SG, Sa T, Singh BK. Plant–microbiome interactions: from community assembly to plant health. Nat Rev Microbiol 2020;18 (11):607–21. 链接1

[15] Fan K, Weisenhorn P, Gilbert JA, Chu H. Wheat rhizosphere harbors a less complex and more stable microbial co-occurrence pattern than bulk soil. Soil Biol Biochem 2018;125:251–60. 链接1

[16] de Vries FT, Griffiths RI, Knight CG, Nicolitch O, Williams A. Harnessing rhizosphere microbiomes for drought-resilient crop production. Science 2020;368(6488):270–4. 链接1

[17] Bakker PAHM, Pieterse CMJ, de Jonge R, Berendsen RL. The soil-borne legacy. Cell 2018;172(6):1178–80. 链接1

[18] Lozano GL, Park HB, Bravo JI, Armstrong EA, Denu JM, Stabb EV, et al. Bacterial analogs of plant tetrahydropyridine alkaloids mediate microbial interactions in a rhizosphere model system. Appl Environ Microbiol 2019;85(10):e03058- 18. 链接1

[19] Neori A, Agami M. The functioning of rhizosphere biota in wetlands—a review. Wetlands 2017;37(4):615–33. 链接1

[20] Kowalski KP, Bacon C, Bickford W, Braun H, Clay K, Leduc-Lapierre M, et al. Advancing the science of microbial symbiosis to support invasive species management: a case study on Phragmites in the Great Lakes. Front Microbiol 2015;6(491):95. 链接1

[21] Vymazal J, Brˇezinová T. Accumulation of heavy metals in aboveground biomass of Phragmites australis in horizontal flow constructed wetlands for wastewater treatment: a review. Chem Eng J 2016;290:232–42. 链接1

[22] Ghori NH, Ghori T, Hayat MQ, Imadi SR, Gul A, Altay V, et al. Heavy metal stress and responses in plants. Int J Environ Sci Technol 2019;16(3):1807–28. 链接1

[23] Roosta HR, Estaji A, Niknam F. Effect of iron, zinc and manganese shortageinduced change on photosynthetic pigments, some osmoregulators and chlorophyll fluorescence parameters in lettuce. Photosynthetica 2018;56 (2):606–15. 链接1

[24] Wang Z, Yue L, Dhankher OP, Xing B. Nano-enabled improvements of growth and nutritional quality in food plants driven by rhizosphere processes. Environ Int 2020;142:105831. 链接1

[25] Salt DE, Benhamou N, Leszczyniecka M, Raskin I, Chet I. A possible role for rhizobacteria in water treatment by plant roots. Int J Phytoremediation 1999;1(1):67–79. 链接1

[26] Yin DX, Fang W, Guan DX, Williams PN, Moreno-Jimenez E, Gao Y, et al. Localized intensification of arsenic release within the emergent rice rhizosphere. Environ Sci Technol 2020;54(6):3138–47. 链接1

[27] Wang J, Wang PM, Gu Y, Kopittke PM, Zhao FJ, Wang P. Iron-manganese (oxyhydro)oxides, rather than oxidation of sulfides, determine the mobilization of Cd during soil drainage in paddy soil systems. Environ Sci Technol 2019;53(5):2500–8. 链接1

[28] Li Y, Feng W, Chi H, Huang Y, Ruan D, Chao Y, et al. Could the rhizoplane biofilm of wetland plants lead to rhizospheric heavy metal precipitation and iron–sulfur cycle termination? J Soils Sediments 2019;19(11):3760–72. 链接1

[29] Armstrong J, Armstrong W. Rice and Phragmites: effects of organic acids on growth, root permeability, and radial oxygen loss to the rhizosphere. Am J Bot 2001;88(8):1359–70. 链接1

[30] Pi N, Tam NFY, Wong MH. Effects of wastewater discharge on formation of Fe plaque on root surface and radial oxygen loss of mangrove roots. Environ Pollut 2010;158(2):381–7. 链接1

[31] Weiss JV, Emerson D, Backer SM, Megonigal JP. Enumeration of Fe(II)- oxidizing and Fe(III)-reducing bacteria in the root zone of wetland plants: implications for a rhizosphere iron cycle. Biogeochemistry 2003;64(1):77–96. 链接1

[32] He J, Zhang L, Jin S, Zhu Y, Liu F. Bacterial communities inside and surrounding soil iron–manganese nodules. Geomicrobiol J 2008;25(1):14–24. 链接1

[33] Amaral DC, Lopes G, Guilherme LRG, Seyfferth AL. A new approach to sampling intact Fe plaque reveals Si-induced changes in Fe mineral composition and shoot As in rice. Environ Sci Technol 2017;51(1):38–45. 链接1

[34] Hansel CM, La Force MJ, Fendorf S, Sutton S. Spatial and temporal association of As and Fe species on aquatic plant roots. Environ Sci Technol 2002;36 (9):1988–94. 链接1

[35] Xiao A, Li WC, Ye Z. Effects of Fe-oxidizing bacteria (FeOB) on iron plaque formation, As concentrations and speciation in rice (Oryza sativa L.). Ecotoxicol Environ Saf 2020;190:110136.

[36] de Souza MP, Huang CPA, Chee N, Terry N, de Souza MP. Rhizosphere bacteria enhance the accumulation of selenium and mercury in wetland plants. Planta 1999;209(2):259–63. 链接1

[37] Toyama T, Nishimura Y, Ogata Y, Sei K, Mori K, Ike M. Effects of planting Phragmites australis on nitrogen removal, microbial nitrogen cycling, and abundance of ammonia-oxidizing and denitrifying microorganisms in sediments. Environ Technol 2016;37(4):478–85. 链接1

[38] Afzal M, Khan QM, Sessitsch A. Endophytic bacteria: prospects and applications for the phytoremediation of organic pollutants. Chemosphere 2014;117:232–42. 链接1

[39] Wang TT, Ying GG, Shi WJ, Zhao JL, Liu YS, Chen J, et al. Uptake and translocation of perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) by wetland plants: tissue- and cell-level distribution visualization with desorption electrospray ionization mass spectrometry (DESI-MS) and transmission electron microscopy equipped with energy-dispersive spectroscopy (TEM-EDS). Environ Sci Technol 2020;54(10):6009–20. 链接1

[40] He Y, Langenhoff AAM, Sutton NB, Rijnaarts HHM, Blokland MH, Chen F, et al. Metabolism of ibuprofen by Phragmites australis: uptake and phytodegradation. Environ Sci Technol 2017;51(8):4576–84. 链接1

[41] Tian W, Zhao Y, Sun H, Bai J, Wang Y, Wu C. The effect of irrigation with oilpolluted water on microbial communities in estuarine reed rhizosphere soils. Ecol Eng 2014;70:275–81. 链接1

[42] Toyama T, Momotani N, Ogata Y, Miyamori Y, Inoue D, Sei K, et al. Isolation and characterization of 4-tert-butylphenol-utilizing Sphingobium fuliginis strains from Phragmites australis rhizosphere sediment. Appl Environ Microbiol 2010;76(20):6733–40. 链接1

[43] Bakhshoodeh R, Alavi N, Oldham C, Santos RM, Babaei AA, Vymazal J, et al. Constructed wetlands for landfill leachate treatment: a review. Ecol Eng 2020;146:105725. 链接1

[44] Wang S, Wang W, Liu L, Zhuang L, Zhao S, Su Yu, et al. Microbial nitrogen cycle hotspots in the plant-bed/ditch system of a constructed wetland with N2O mitigation. Environ Sci Technol 2018;52(11):6226–36. 链接1

[45] Yu B, Liu C, Wang S, Wang W, Zhao S, Zhu G. Applying constructed wetlandmicrobial electrochemical system to enhance NH4 + removal at low temperature. Sci Total Environ 2020;724:138017. 链接1

[46] Wang X, Wang S, Shi G, Wang W, Zhu G. Factors driving the distribution and role of AOA and AOB in Phragmites communis rhizosphere in riparian zone. J Basic Microbiol 2019;59(4):425–36. 链接1

[47] Wang S, Pi Y, Jiang Y, Pan H, Wang X, Wang X, et al. Nitrate reduction in the reed rhizosphere of a riparian zone: from functional genes to activity and contribution. Environ Res 2020;180:108867. 链接1

[48] Zhu Y, Du X, Gao C, Yu Z. Adsorption behavior of inorganic and organic phosphate by iron manganese plaques on reed roots in wetlands. Sustainability 2018;10(12):4578. 链接1

[49] Ali MA, Naveed M, Mustafa A, Abbas A. The good, the bad, and the ugly of rhizosphere microbiome. In: Kumar V, Kumar M, Sharma S, Prasad R, editors. Probiotics and plant health. Singapore: Springer Singapore; 2017. p. 253–90. 链接1

[50] Borneff-Lipp M, Duerr M. Methods for sampling and analyzing wetland protozoa (protists). In: Anderson JT, Davis CA, editors. Wetland techniques. Dordrecht: Springer; 2013. p. 123–41. 链接1

[51] DeVries AE, Kowalski KP, Bickford WA. Growth and behavior of North American microbes on Phragmites australis leaves. Microorganisms 2020;8 (5):690. 链接1

[52] Bulgarelli D, Rott M, Schlaeppi K, Ver Loren van Themaat E, Ahmadinejad N, Assenza F, et al. Revealing structure and assembly cues for Arabidopsis rootinhabiting bacterial microbiota. Nature 2012;488(7409):91–5. 链接1

[53] He R, Zeng J, Zhao D, Huang R, Yu Z, Wu QL, et al. Contrasting patterns in diversity and community assembly of Phragmites australis root-associated bacterial communities from different seasons. Appl Environ Microbiol 2020;86(14):e00379–40. 链接1

[54] Zhou Q, Zhang X, He R, Wang S, Jiao C, Huang R, et al. The composition and assembly of bacterial communities across the rhizosphere and phyllosphere compartments of Phragmites Australis. Diversity 2019;11(6):98. 链接1

[55] Behera P, Mohapatra M, Adhya TK, Suar M, Pattnaik AK, Rastogi G. Structural and metabolic diversity of rhizosphere microbial communities of Phragmites karka in a tropical coastal lagoon. Appl Soil Ecol 2018;125: 202–12. 链接1

[56] Bowen JL, Kearns PJ, Byrnes JEK, Wigginton S, Allen WJ, Greenwood M, et al. Lineage overwhelms environmental conditions in determining rhizosphere bacterial community structure in a cosmopolitan invasive plant. Nat Commun 2017;8(1):433. 链接1

[57] Pietrangelo L, Bucci A, Maiuro L, Bulgarelli D, Naclerio G. Unraveling the composition of the root-associated bacterial microbiota of Phragmites australis and Typha latifolia. Front Microbiol 2018;9:1–13. 链接1

[58] Zhang X, Zhang L, Zhang L, Ji Z, Shao Y, Zhou H, et al. Comparison of rhizosphere bacterial communities of reed and Suaeda in Shuangtaizi River Estuary, Northeast China. Mar Pollut Bull 2019;140:171–8. 链接1

[59] Bacci G, Cerri M, Lastrucci L, Ferranti F, Ferri V, Foggi B, et al. Applying predictive models to decipher rhizobacterial modifications in common reed die-back affected populations. Sci Total Environ 2018;642:708–22. 链接1

[60] Gao T, Shi XY. Taxonomic structure and function of seed-inhabiting bacterial microbiota from common reed (Phragmites australis) and narrowleaf cattail (Typha angustifolia L.). Arch Microbiol 2018;200(6):869–76. 链接1

[61] Fang J, Deng Y, Che R, Han C, Zhong W. Bacterial community composition in soils covered by different vegetation types in the Yancheng tidal marsh. Environ Sci Pollut Res Int 2020;27(17):21517–32. 链接1

[62] Huang R, Zeng J, Zhao D, Cook KV, Hambright KD, Yu Z. Sediment microbiomes associated with the rhizosphere of emergent macrophytes in a shallow, subtropical lake. Limnol Oceanogr 2020;65(S1):S38–48. 链接1

[63] Bickford WA, Goldberg DE, Kowalski KP, Zak DR. Root endophytes and invasiveness: no difference between native and non-native Phragmites in the Great Lakes Region. Ecosphere 2018;9(12):e02526. 链接1

[64] Borruso L, Bacci G, Mengoni A, De Philippis R, Brusetti L. Rhizosphere effect and salinity competing to shape microbial communities in Phragmites australis (Cav.) Trin. ex-Steud. FEMS Microbiol Lett 2014;359(2):193–200. 链接1

[65] Eller F, Skálová H, Caplan JS, Bhattarai GP, Burger MK, Cronin JT, et al. Cosmopolitan species as models for ecophysiological responses to global change: the common reed Phragmites australis. Front Plant Sci 2017;8: 1833. 链接1

[66] Clairmont LK, Slawson RM. Contrasting water quality treatments result in structural and functional changes to wetland plant-associated microbial communities in lab-scale mesocosms. Microb Ecol 2020;79(1):50–63. 链接1

[67] Yarwood SA, Baldwin AH, Gonzalez Mateu M, Buyer JS. Archaeal rhizosphere communities differ between the native and invasive lineages of the wetland plant Phragmites australis (common reed) in a Chesapeake Bay subestuary. Biol Invasions 2016;18(9):2717–28. 链接1

[68] Shi S, Richardson AE, O’Callaghan M, DeAngelis KM, Jones EE, Stewart A, et al. Effects of selected root exudate components on soil bacterial communities. FEMS Microbiol Ecol 2011;77(3):600–10.

[69] Hoshino T, Doi H, Uramoto GI, Wörmer L, Adhikari RR, Xiao N, et al. Global diversity of microbial communities in marine sediment. Proc Natl Acad Sci 2020;117(44):27587–97. 链接1

[70] Toyama T, Murashita M, Kobayashi K, Kikuchi S, Sei K, Tanaka Y, et al. Acceleration of nonylphenol and 4-tert-octylphenol degradation in sediment by Phragmites australis and associated rhizosphere bacteria. Environ Sci Technol 2011;45(15):6524–30. 链接1

[71] Toyama T, Furukawa T, Maeda N, Inoue D, Sei K, Mori K, et al. Accelerated biodegradation of pyrene and benzo[a]pyrene in the Phragmites australis rhizosphere by bacteria–root exudate interactions. Water Res 2011;45 (4):1629–38. 链接1

[72] Liu Y, Li H, Liu QF, Li YH. Archaeal communities associated with roots of the common reed (Phragmites australis) in Beijing Cuihu Wetland. World J Microbiol Biotechnol 2015;31(5):823–32. 链接1

[73] Teske A, Sørensen KB. Uncultured archaea in deep marine subsurface sediments: have we caught them all? ISME J 2008;2(1):3–18. 链接1

[74] Ma B, Lv X, Warren A, Gong J. Shifts in diversity and community structure of endophytic bacteria and archaea across root, stem and leaf tissues in the common reed, Phragmites australis, along a salinity gradient in a marine tidal wetland of Northern China. Antonie Van Leeuwenhoek 2013;104 (5):759–68. 链接1

[75] Llirós M, Trias R, Borrego C, Bañeras L. Specific archaeal communities are selected on the root surfaces of Ruppia spp. and Phragmites australis. Wetlands 2014;34(2):403–11. 链接1

[76] Chen XP, Zhu YG, Xia Y, Shen JP, He JZ. Ammonia-oxidizing archaea: important players in paddy rhizosphere soil? Environ Microbiol 2008;10 (8):1978–87. 链接1

[77] Angelini P, Rubini A, Gigante D, Reale L, Pagiotti R, Venanzoni R. The endophytic fungal communities associated with the leaves and roots of the common reed (Phragmites australis) in Lake Trasimeno (Perugia, Italy) in declining and healthy stands. Fungal Ecol 2012;5(6):683–93. 链接1

[78] Neubert K, Mendgen K, Brinkmann H, Wirsel SGR. Only a few fungal species dominate highly diverse mycofloras associated with the common reed. Appl Environ Microbiol 2006;72(2):1118–28. 链接1

[79] Clay K, Shearin ZRC, Bourke KA, Bickford WA, Kowalski KP. Diversity of fungal endophytes in non-native Phragmites australis in the Great Lakes. Biol Invasions 2016;18(9):2703–16. 链接1

[80] Soares MA, Li HY, Kowalski KP, Bergen M, Torres MS, White JF. Evaluation of the functional roles of fungal endophytes of Phragmites australis from high saline and low saline habitats. Biol Invasions 2016;18 (9):2689–702. 链接1

[81] Gonzalez Mateu M, Baldwin AH, Maul JE, Yarwood SA. Dark septate endophyte improves salt tolerance of native and invasive lineages of Phragmites australis. ISME J 2020;14(8):1943–54. 链接1

[82] Martin LJ, Blossey B. The runaway weed: costs and failures of Phragmites australis management in the USA. Estuaries Coasts 2013;36(3):626–32. 链接1

[83] Zhang B, Zhang J, Liu Y, Shi P, Wei G. Co-occurrence patterns of soybean rhizosphere microbiome at a continental scale. Soil Biol Biochem 2018;118:178–86. 链接1

[84] Nyieku FE, Essandoh HMK, Armah FA, Awuah E. Environmental conditions and the performance of free water surface flow constructed wetland: a multivariate statistical approach. Wetlands Ecol Manage 2021;29(3):381–95. 链接1

[85] Zhao Y, Xiang W, Ma M, Zhang X, Bao Z, Xie S, et al. The role of laccase in stabilization of soil organic matter by iron in various plant-dominated peatlands: degradation or sequestration? Plant Soil 2019;443(1–2): 575–90. 链接1

[86] Zhang W, Li XG, Sun K, Tang MJ, Xu FJ, Zhang M, et al. Mycelial networkmediated rhizobial dispersal enhances legume nodulation. ISME J 2020;14 (4):1015–29. 链接1

[87] Vorholt JA, Vogel C, Carlström CI, Müller DB. Establishing causality: opportunities of synthetic communities for plant microbiome research. Cell Host Microbe 2017;22(2):142–55. 链接1

[88] Lamers LP, van Diggelen JM, Op den Camp HJ, Visser EJ, Lucassen EC, Vile MA, et al. Microbial transformations of nitrogen, sulfur, and iron dictate vegetation composition in wetlands: a review. Front Microbiol 2012;3: 156.

[89] Lemanceau P, Bauer P, Kraemer S, Briat JF. Iron dynamics in the rhizosphere as a case study for analyzing interactions between soils, plants and microbes. Plant Soil 2009;321(1–2):513–35. 链接1

[90] Kaplan DI, Xu C, Huang S, Lin Y, Tolic´ N, Roscioli-Johnson KM, et al. Unique organic matter and microbial properties in the rhizosphere of a wetland soil. Environ Sci Technol 2016;50(8):4169–77. 链接1

[91] Grebel JE, Charbonnet JA, Sedlak DL. Oxidation of organic contaminants by manganese oxide geomedia for passive urban stormwater treatment systems. Water Res 2016;88:481–91. 链接1

[92] Rajkumar M, Sandhya S, Prasad MNV, Freitas H. Perspectives of plantassociated microbes in heavy metal phytoremediation. Biotechnol Adv 2012;30(6):1562–74. 链接1

[93] Ke J, Wang B, Yoshikuni Y. Microbiome engineering: synthetic biology of plant-associated microbiomes in sustainable agriculture. Trends Biotechnol 2021;39(3):244–61. 链接1

[94] Ke J, Yoshikuni Y. Multi-chassis engineering for heterologous production of microbial natural products. Curr Opin Biotechnol 2020;62:88–97. 链接1

[95] Saad MM, Eida AA, Hirt H. Tailoring plant-associated microbial inoculants in agriculture: a roadmap for successful application. J Exp Bot 2020;71 (13):3878–901.

[96] Maisch M, Lueder U, Kappler A, Schmidt C. Iron lung: how rice roots induce iron redox changes in the rhizosphere and create niches for microaerophilic Fe(II)-oxidizing bacteria. Environ Sci Technol Lett 2019;6(10):600–5. 链接1

[97] Vymazal J, Švehla J. Iron and manganese in sediments of constructed wetlands with horizontal subsurface flow treating municipal sewage. Ecol Eng 2013;50:69–75. 链接1

[98] Northup DE, Barns SM, Yu LE, Spilde MN, Schelble RT, Dano KE, et al. Diverse microbial communities inhabiting ferromanganese deposits in Lechuguilla and Spider Caves. Environ Microbiol 2003;5(11):1071–86. 链接1

[99] Learman DR, Voelker BM, Vazquez-Rodriguez AI, Hansel CM. Formation of manganese oxides by bacterially generated superoxide. Nat Geosci 2011;4 (2):95–8. 链接1

[100] Peng L, Deng X, Song H, Tan X, Gu JD, Luo S, et al. Manganese enhances the immobilization of trace cadmium from irrigation water in biological soil crust. Ecotoxicol Environ Saf 2019;168:369–77. 链接1

[101] Bai Y, Yang T, Liang J, Qu J. The role of biogenic Fe–Mn oxides formed in situ for arsenic oxidation and adsorption in aquatic ecosystems. Water Res 2016;98:119–27. 链接1

[102] Liang J, Bai Y, Qu J. Microbial interspecies interactions affect arsenic fate in the presence of MnII. Microb Ecol 2017;74(4):788–94. 链接1

[103] Li J, Pang S, Zhou Y, Sun S, Wang L, Wang Z, et al. Transformation of bisphenol AF and bisphenol S by manganese dioxide and effect of iodide. Water Res 2018;143:47–55. 链接1

[104] Herndon EM, Jin L, Brantley SL. Soils reveal widespread manganese enrichment from industrial inputs. Environ Sci Technol 2011;45(1):241–7. 链接1

[105] Yang Y, Liu J, Zhang N, Xie H, Zhang J, Hu Z, et al. Influence of application of manganese ore in constructed wetlands on the mechanisms and improvement of nitrogen and phosphorus removal. Ecotoxicol Environ Saf 2019;170(1):446–52. 链接1

[106] Guo Z, Kang Y, Hu Z, Liang S, Xie H, Ngo HH, et al. Removal pathways of benzofluoranthene in a constructed wetland amended with metallic ions sembedded carbon. Bioresour Technol 2020;311:123481. 链接1

[107] Li H, Xu H, Yang YL, Yang XL, Wu Y, Zhang S, et al. Effects of graphite and Mn ore media on electro-active bacteria enrichment and fate of antibiotic and corresponding resistance gene in up flow microbial fuel cell constructed wetland. Water Res 2019;165:114988. 链接1

[108] Yan D, Ma W, Song X, Bao Y. The effect of iron plaque on uptake and translocation of norfloxacin in rice seedlings grown in paddy soil. Environ Sci Pollut Res Int 2017;24(8):7544–54. 链接1

[109] Batty LC, Baker AJ, Wheeler BD. Aluminium and phosphate uptake by Phragmites australis: the role of Fe, Mn and Al root plaques. Ann Bot 2002;89 (4):443–9. 链接1

[110] Xie H, Yang Y, Liu J, Kang Y, Zhang J, Hu Z, et al. Enhanced triclosan and nutrient removal performance in vertical up-flow constructed wetlands with manganese oxides. Water Res 2018;143:457–66. 链接1

[111] Hansel CM, Fendorf S, Sutton S, Newville M. Characterization of Fe plaque and associated metals on the roots of mine-waste impacted aquatic plants. Environ Sci Technol 2001;35(19):3863–8. 链接1

[112] Chowdhary P, Shukla G, Raj G, Ferreira LFR, Bharagava RN. Microbial manganese peroxidase: a ligninolytic enzyme and its ample opportunities in research. SN Applied Sciences 2019;1(1):45. 链接1

[113] Xu X, Wu Y, Rao Y, Fu T, Wu X. Influence of litter decomposition on iron and manganese in the sediments of wetlands for acid mine drainage treatments. Acta Geochim 2019;38(1):68–77. 链接1

[114] Kaur K, Sharma A, Capalash N, Sharma P. Multicopper oxidases: biocatalysts in microbial pathogenesis and stress management. Microbiol Res 2019;222:1–13. 链接1

[115] Levy A, Salas Gonzalez I, Mittelviefhaus M, Clingenpeel S, Herrera Paredes S, Miao J, et al. Genomic features of bacterial adaptation to plants. Nat Genet 2018;50(1):138–50. 链接1

[116] Rudrappa T, Bais HP. Genetics, novel weapons and rhizospheric microcosmal signaling in the invasion of Phragmites australis. Plant Signal Behav 2008;3 (1):1–5. 链接1

相关研究