期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2022年 第16卷 第9期 doi: 10.1016/j.eng.2021.05.017

小粒径和球形气溶胶对2003—2018年陆地总气溶胶光学厚度下降趋势贡献显著

a State Key Laboratory of Severe Weather & Key Laboratory of Atmospheric Chemistry of China Meteorological Administration, Chinese Academy of Meteorological Sciences, Beijing 100081, China
b Institute of Atmospheric Environment, China Meteorological Administration, Shenyang 110166, China

收稿日期: 2021-01-20 修回日期: 2021-04-09 录用日期: 2021-05-06 发布日期: 2021-08-12

下一篇 上一篇

摘要

气溶胶光学和微物理特性是估计大气气溶胶气候强迫最大的不确定性之一。尽管气溶胶光学厚度(AOD)在全球及区域尺度上的演变趋势已经得到了广泛的研究,但对与气溶胶粒子特性相关的类型依赖AOD的变化趋势仍然知之甚少。在此,本研究利用多角度成像光谱辐射计(MISR)反演的气溶胶光学特性数据集,研究了2003—2018 年期间陆地总AOD(TAOD)及其按粒径大小和粒形分离的类型依赖AOD的10 年尺度趋势,分析了TAOD趋势和不同类型AOD演变之间的关系,并量化了不同类型AOD对TAOD趋势的相对贡献。通过将TAOD值分别按0.15、0.40 和0.80 的阈值划分为4 个不同的气溶胶污染等级(APL),进一步探讨了TAOD演变与APL 发生频率年际变化之间的关系。研究结果表明,2003—2018 年期间,除南亚地区外,大多数陆地区域的空气质量都有明显改善,表现为从轻度污染转变为清洁状态。然而,不同的APL对TAOD变化的影响及其相关程度具有显著的区域性差异。此外,自2003 年以来,陆地上的年均TAOD下降趋势达到0.47%⋅a−1 (通过95%置信度检验)。这种显著减少主要归因于小粒径(直径小于0.7 mm)AOD(SAOD)和球形AOD(SPAOD)的持续减少(分别为−0.74%⋅a−1和−0.46%⋅a−1)。统计分析表明,SAOD和SPAOD分别占TAOD的57.5%和89.6%,但对TAOD的趋势贡献可达82.6%和90.4%。最后,研究表明由硫酸盐、有机物和黑碳气溶胶组成的小粒径和球形气溶胶在驱动陆地TAOD年际变化中起主导作用。

补充材料

图片

图1

图2

图3

图 4

图5

参考文献

[ 1 ] Kaufman YJ, Koren I. Smoke and pollution aerosol effect on cloud cover. Science 2006;313:655‒8. 链接1

[ 2 ] Ramanathan V, Carmichael G. Global and regional climate changes due to black carbon. Nat Geosci 2008;1(4):221‒7. 链接1

[ 3 ] Koren I, Altaratz O, Remer LA, Feingold G, Martins JV, Heiblum RH. Aerosol-induced intensification of rain from the tropics to the mid-latitudes. Nat Geosci 2012;5(2):118‒22. 链接1

[ 4 ] Li Z, Lau WKM, Ramanathan V, Wu G, Ding Y, Manoj MG, et al. Aerosol and monsoon climate interactions over Asia. Rev Geophys 2016;54(4):866‒929. 链接1

[ 5 ] Yang Y, Russell LM, Lou S, Liao H, Guo J, Liu Y, et al. Dust‒wind interactions can intensify aerosol pollution over eastern China. Nat Commun 2017;8(1):15333. 链接1

[ 6 ] Jiang JH, Su H, Huang L, Wang Y, Massie S, Zhao B, et al. Contrasting effects on deep convective clouds by different types of aerosols. Nat Commun 2018;9(1):3874. 链接1

[ 7 ] Huang X, Ding A, Wang Z, Ding K, Gao J, Chai F, et al. Amplified transboundary transport of haze by aerosol‍‒‍boundary layer interaction in China. Nat Geosci 2020;13(6):428‒34. 链接1

[ 8 ] Xu Y, Liu Y, Han Z, Zhou B, Ding Y, Wu J, et al. Influence of human activities on wintertime haze-related meteorological conditions over the Jing‍‒‍Jin‍‒‍Ji region. Engineering 2021;7(8):1185‒92. 链接1

[ 9 ] Ding Y, Wu P, Liu Y, Song Y. Environmental and dynamic conditions for the occurrence of persistent haze events in north China. Engineering 2017;‍3(2):266‒71. 链接1

[10] Liu C, Gao M, Hu Q, Brasseur GP, Carmichael GR. Stereoscopic monitoring: a promising strategy to advance diagnostic and prediction of air pollution. Bull Am Meteorol Soc 2021;102(4):1‒19. 链接1

[11] Xing C, Liu C, Wang S, Chan KL, Gao Y, Huang X, et al. Observations of the vertical distributions of summertime atmospheric pollutants and the corresponding ozone production in Shanghai, China. Atmos Chem Phys 2017;17(23):14275‒89. 链接1

[12] Xue T, Zhu T, Zheng Y, Zhang Q. Declines in mental health associated with air pollution and temperature variability in China. Nat Commun 2019;10:2165. 链接1

[13] Lelieveld J, Evans JS, Fnais M, Giannadaki D, Pozzer A. The contribution of outdoor air pollution sources to premature mortality on a global scale. Nature 2015;525(7569):367‒71. 链接1

[14] Liu H, Long Z, Duan Z, Shi H. A new model using multiple feature clustering and neural networks for forecasting hourly PM2.5 concentrations, and its applications in China. Engineering 2020;6(8):944‒56. 链接1

[15] Hu J, Huang L, Chen M, Liao H, Zhang H, Wang S, et al. Premature mortality attributable to particulate matter in China: source contributions and responses to reductions. Environ Sci Technol 2017;51(17):9950‒9. 链接1

[16] Gui K, Che H, Chen Q, Zeng Z, Zheng Yu, Long Q, et al. Water vapor variation and the effect of aerosols in China. Atmos Environ 2017;165:322‒35. 链接1

[17] Koren I, Martins JV, Remer LA, Afargan H. Smoke invigoration versus inhibition of clouds over the amazon. Science 2008;321(5891):946‒9. 链接1

[18] Zhao B, Jiang JH, Diner DJ, Su H, Gu Yu, Liou KN, et al. Intra-annual variations of regional aerosol optical depth, vertical distribution, and particle types from multiple satellite and ground-based observational datasets. Atmos Chem Phys 2018;18(15):11247‒60. 链接1

[19] Liu Y, Hua S, Jia R, Huang J. Effect of aerosols on the ice cloud properties over the Tibetan Plateau. J Geophys Res Atoms 2019;124(16):9594‒608. 链接1

[20] Pozzer A, de Meij A, Yoon J, Tost H, Georgoulias AK, Astitha M. AOD trends during 2001‍‒‍2010 from observations and model simulations. Atmos Chem Phys 2015;15(10):5521‒35. 链接1

[21] Zhao B, Jiang JH, Gu Y, Diner D, Worden J, Liou KN, et al. Decadal-scale trends in regional aerosol particle properties and their linkage to emission changes. Environ Res Lett 2017;12(5):054021. 链接1

[22] Hammer MS, Martin RV, Li C, Torres O, Manning M, Boys BL. Insight into global vtrends in aerosol composition from 2005 to 2015 inferred from the OMI ultraviolet aerosol index. Atmos Chem Phys 2018;18(11):8097‒112. 链接1

[23] Che H, Gui K, Xia X, Wang Y, Holben BN, Goloub P, et al. Large contribution of meteorological factors to inter-decadal changes in regional aerosol optical depth. Atmos Chem Phys 2019;19(16):10497‒523. 链接1

[24] Li L, Che H, Derimian Y, Dubovik O, Luan Q, Li Q, et al. Climatology of fine and coarse mode aerosol optical thickness over East and South Asia derived from POLDER/PARASOL satellite. J Geophys Res Atmos 2020;‍125(16):e2020JD032665. 链接1

[25] Stocker TF, Qin D, Plattner GK, Tignor MMB, Allen SK, Boschung J, editors. Climate change 2013 the physical science basis. Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press; 2013. 链接1

[26] Diner DJ, Beckert JC, Reilly TH, Bruegge CJ, Conel JE, Kahn RA, et al. Multi-Angle Imaging Spectroradiometer (MISR) instrument description and experiment overview. IEEE Trans Geosci Remote Sens 1998;36(4):1072‒87. 链接1

[27] Kahn R, Banerjee P, McDonald D. Sensitivity of multiangle imaging to natural mixtures of aerosols over ocean. J Geophys Res Atmos 2001;‍106(D16):18219‒38. 链接1

[28] Garay MJ, Witek ML, Kahn RA, Seidel FC, Limbacher JA, Bull MA, et al. Introducing the 4.4 km spatial resolution multi-angle imaging spectroradiometer (MISR) aerosol product. Atmos Meas Tech 2020;13(2):593‒628. 链接1

[29] Diner DJ, Martonchik JV, Kahn RA, Pinty B, Gobron N, Nelson DL, et al. Using angular and spectral shape similarity constraints to improve MISR aerosol and surface retrievals over land. Remote Sens Environ 2005;‍94(2):155‒71. 链接1

[30] Kahn RA, Gaitley BJ, Garay MJ, Diner DJ, Eck TF, Smirnov A, et al. Multiangle imaging spectroradiometer global aerosol product assessment by comparison with the aerosol robotic network. J Geophys Res Atmos 2010;115:D23209. 链接1

[31] Kahn RA, Gaitley BJ. An analysis of global aerosol type as retrieved by MISR. J Geophys Res 2015;120(9):4248‒81. 链接1

[32] Kahn R, Petzold A, Wendisch M, Bierwirth E, Dinter T, Esselborn M, et al. Desert dust aerosol air mass mapping in the western Sahara, using particle properties derived from space-based multi-angle imaging. Tellus B Chem Phys Meterol 2009;61(1):239‒51. 链接1

[33] Inness A, Ades M, Agustí-Panareda A, Barré J, Benedictow A, Blechschmidt AM, et al. The CAMS reanalysis of atmospheric composition. Atmos Chem Phys 2019;19(6):3515‒56. 链接1

[34] Buchard V, Randles CA, da Silva AM, Darmenov A, Colarco PR, Govindaraju R, et al. The MERRA-2 aerosol reanalysis, 1980-onward, part I: system description and data assimilation evaluation. J Clim 2017;30:6851‒72. 链接1

[35] Mann HB. Nonparametric tests against trend. Econometrica 1945;13(3):245‒59. 链接1

[36] Kendall MG. Rank correlation methods. 4th ed. London: Charles Griffin; 1975.

[37] Xu C, Ma Y, Yang K, You C. Tibetan Plateau impacts on global dust transport in the upper troposphere. J Clim 2018;31(12):4745‒56. 链接1

[38] Zhu J, Xia X, Che H, Wang J, Cong Z, Zhao T, et al. Spatiotemporal variation of aerosol and potential long-range transport impact over the Tibetan Plateau, China. Atmos Chem Phys 2019;19(23):14637‒56. 链接1

[39] Zhao C, Yang Y, Fan H, Huang J, Fu Y, Zhang X, et al. Aerosol characteristics and impacts on weather and climate over the Tibetan Plateau. Natl Sci Rev 2020;7(3):492‒5. 链接1

[40] Zubkova M, Boschetti L, Abatzoglou JT, Giglio L. Changes in fire activity in Africa from 2002 to 2016 and their potential drivers. Geophys Res Lett 2019;46(13):7643‒53. 链接1

[41] David LM, Ravishankara AR, Kodros JK, Venkataraman C, Sadavarte P, Pierce JR, et al. Aerosol optical depth over India. J Geophys Res Atmos 2018;123(7):3688‒703. 链接1

[42] Koren I, Remer LA, Longo K. Reversal of trend of biomass burning in the Amazon. Geophys Res Lett 2007;34(20):2‒5. 链接1

[43] Hammer MS, van Donkelaar A, Li C, Lyapustin A, Sayer AM, Hsu NC, et al. Global estimates and long-term trends of fine particulate matter concentrations (1998‒2018). Environ Sci Technol 2020;54(13):7879‒90. 链接1

[44] Zhang F, Wang Y, Peng J, Chen L, Sun Y, Duan L, et al. An unexpected catalyst dominates formation and radiative forcing of regional haze. Proc Natl Acad Sci USA 2020;117(8):3960‒6. 链接1

[45] Zhang C, Liu C, Hu Q, Cai Z, Su W, Xia C, et al. Satellite UV‍‒‍Vis spectroscopy: implications for air quality trends and their driving forces in China during 2005‒2017. Light Sci Appl 2019;8(1):100. 链接1

[46] Zhang C, Liu C, Chan KL, Hu Q, Liu H, Li B, et al. First observation of tropospheric nitrogen dioxide from the environmental trace gases monitoring instrument onboard the GaoFen-5 satellite. Light Sci Appl 2020;9(1):66. 链接1

[47] Zhang Q, Zheng Y, Tong D, Shao M, Wang S, Zhang Y, et al. Drivers of improved PM2.5 air quality in China from 2013 to 2017. Proc Natl Acad Sci USA 2019;116(49):24463‒9. 链接1

[48] Xie M, Duan H, Kang P, Qiao Q, Bai L. Toward an ecological civilization: China’s progress as documented by the second national general survey of pollution sources. Engineering 2021;7(9):1336‒41. 链接1

[49] Lu X, Zhang S, Xing J, Wang Y, Chen W, Ding D, et al. Progress of air pollution control in China and its challenges and opportunities in the ecological civilization era. Engineering 2020;6(12):1423‒31. 链接1

[50] Klingmüller K, Pozzer A, Metzger S, Stenchikov GL, Lelieveld J. Aerosol optical depth trend over the Middle East. Atmos Chem Phys 2016;‍16(8):5063‒73. 链接1

[51] Jin Q, Pryor SC. Long-term trends of high aerosol pollution events and their climatic impacts in north America using multiple satellite retrievals and modern-era retrospective analysis for research and applications version 2. J Geophys Res Atmos 2020;125(4): e2019JD031137. 链接1

[52] Zheng B, Tong D, Li M, Liu F, Hong C, Geng G, et al. Trends in China’s anthropogenic emissions since 2010 as the consequence of clean air actions. Atmos Chem Phys 2018;18(19):14095‒111. 链接1

[53] Wang X, Liu J, Che H, Ji F, Liu J. Spatial and temporal evolution of natural and anthropogenic dust events over northern China. Sci Rep 2018;8(1):2141. 链接1

[54] Liu J, Wu D, Liu G, Mao R, Chen S, Ji M, et al. Impact of Arctic amplification on declining spring dust events in East Asia. Clim Dyn 2020;54(3‒4):1913‒35.

[55] Yao W, Gui K, Wang Y, Che H, Zhang X. Identifying the dominant local factors of 2000‒2019 changes in dust loading over East Asia. Sci Total Environ 2021;777:146064. 链接1

[56] Zhou D, Ding K, Huang X, Liu L, Liu Q, Xu Z, et al. Transport, mixing and feedback of dust, biomass burning and anthropogenic pollutants in eastern Asia: a case study. Atmos Chem Phys 2018;18(22):16345‒61. 链接1

[57] Sun T, Che H, Qi B, Wang Y, Dong Y, Xia X, et al. Aerosol optical characteristics and their vertical distributions under enhanced haze pollution events: effect of the regional transport of different aerosol types over eastern China. Atmos Chem Phys 2018;18(4):2949‒71. 链接1

[58] Wang J, Xia X, Wang P, Christopher SA. Diurnal variability of dust aerosol optical thickness and Angström exponent over dust source regions in China. Geophys Res Lett 2004;31(8):L08107. 链接1

[59] Christopher SA, Wang J. Intercomparison between Multi-Angle Imaging Spectroradiometer (MISR) and sunphotometer aerosol optical thickness in dust source regions over China: implications for satellite aerosol retrievals and radiative forcing calculations. Tellus B Chem Phys Meterol 2004;56(5):451‒6. 链接1

相关研究