期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2022年 第10卷 第3期 doi: 10.1016/j.eng.2021.05.023

采用白光X射线源和模拟阵列能量色散阵列探测器的高通量粉末衍射技术

a Materials Genome Initiative Center & School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
b Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
c Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen 518055, China
d Department of Materials Science and Engineering & Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
e Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
f Guangdong Provincial Key Laboratory of Energy Materials for Electric Power, Southern University of Science and Technology, Shenzhen 518055, China
g Guangdong–Hong Kong–Macao Joint Laboratory for Photonic–Thermal–Electrical Energy Materials and Devices, Southern University of Science and Technology, Shenzhen 518055, China

收稿日期: 2020-08-11 修回日期: 2021-02-01 录用日期: 2021-05-13 发布日期: 2022-02-24

下一篇 上一篇

摘要

在上海同步辐射光源(SSRF)的弯铁光束线上,利用由空间扫描硅漂移探测器(SDD)模拟获得的能量色散阵列探测器,对CeO2样品进行高通量白光X射线粉末衍射(pXRD)实验。考虑到与实验硬件和衍射角相关的多种因素,对数据进行了详细分析和校正。校正后的衍射图谱表明,由能量色散X 射线衍射(EDXRD)获得的不同衍射峰之间的相对强度与来自角度分辨X射线衍射(ARXRD)的相对强度一致,说明EDXRD结果可用于分析未知样品的晶体结构。实验同时采集了X射线荧光(XRF)信号。来自所有像素的XRF计数可直接在能量坐标下叠加,而衍射信号则需在d 空间下叠加,从而大大改善了阵列探测器的峰值强度和信噪比(S/N)。与ARXRD相比,白光X射线衍射信号强度是单色光衍射信号强度的104倍左右。q 空间中衍射峰的半峰全宽(FWHM)取决于探测器的能量分辨率、探测器接收角范围和衍射角大小。如果实验参数选择得当,在当前能量色散探测器的能量分辨率下,EDXRD有可能实现与ARXRD相同甚至更小的半峰全宽。

图片

图1

图2

图3

图4

图5

图6

参考文献

[ 1 ] Cullity BD, Stock SR. Elements of X-ray diffraction. 3rd ed. London: Pearson; 2014. 链接1

[ 2 ] Xiang XD, Sun X, Briceño G, Lou Y, Wang KA, Chang H, et al. A combinatorial approach to materials discovery. Science 1995;268(5218):1738–40. 链接1

[ 3 ] Xiang XD, Wang G, Zhang X, Xiang Y, Wang H. Individualized pixel synthesis and characterization of combinatorial materials chips. Engineering 2015;1 (2):225–33. 链接1

[ 4 ] Gregoire JM, Dale D, Kazimirov A, DiSalvo FJ, van Dover RB. High energy X-ray diffraction/X-ray fluorescence spectroscopy for high-throughput analysis of composition spread thin films. Rev Sci Instrum 2009;80(12):123905. https:// doi.org/10.1063/1.3274179. 链接1

[ 5 ] Xing H, Zhao B, Wang Y, Zhang X, Ren Y, Yan N, et al. Rapid construction of Fe– Co–Ni composition-phase map by combinatorial materials chip approach. ACS Comb Sci 2018;20(3):127–31. 链接1

[ 6 ] Rodriguez-Alvarez H, Weber A, Lauche J, Kaufmann CA, Rissom T, Greiner D, et al. Formation of CuInSe2 and CuGaSe2 thin films deposited by three-stage thermal Co-evaporation: a real-time X-ray diffraction and fluorescence study. Adv Energy Mater 2013;3(10):1381–7. 链接1

[ 7 ] Nielsen MB, Ceresoli D, Parisiades P, Prakapenka VB, Yu T, Wang Y, et al. Phase stability of the SrMnO3 hexagonal perovskite system at high pressure and temperature. Phys Rev B 2014;90(21):214101. 链接1

[ 8 ] Giessen BC, Gordon GE. X-ray diffraction: new high-speed technique based on X-ray spectrography. Science 1968;159(3818):973–5. 链接1

[ 9 ] Buras B, Olsen JS, Gerward L. White beam, X-ray, energy-dispersive diffractometry using synchrotron radiation. Nucl Instrum Methods 1978;152 (1):293–6. 链接1

[10] Luo Z, Geng B, Bao J, Liu C, Liu W, Gao C, et al. High-throughput X-ray characterization system for combinatorial materials studies. Rev Sci Instrum 2005;76(9):095105. 链接1

[11] Mendoza Cuevas A, Bernardini F, Gianoncelli A, Tuniz C. Energy dispersive Xray diffraction and fluorescence portable system for cultural heritage applications. X-Ray Spectrom 2015;44(3):105–15. 链接1

[12] Drakopoulos M, Connolley T, Reinhard C, Atwood R, Magdysyuk O, Vo N, et al. I12: the joint engineering, environment and processing (JEEP) beamline at diamond light source. J Synchrotron Radiat 2015;22(3):828–38. 链接1

[13] O’Flynn D, Reid C, Christodoulou C, Wilson M, Veale MC, Seller P, et al. Pixelated diffraction signatures for explosive detection. In: Broach JT, Holloway JH Jr, editors. Proceedings of SPIE 8357: detection and sensing of mines, explosive objects, and obscured targets XVII; 2012 Apr 23–27; Baltimore, MD, USA; 2012.

[14] O’Flynn D, Crews C, Drakos I, Christodoulou C, Wilson MD, Veale MC, et al. Materials identification using a small-scale pixellated X-ray diffraction system. J Phys D 2016;49(17):175304. 链接1

[15] Nakai I, Abe Y. Portable X-ray powder diffractometer for the analysis of art and archaeological materials. Appl Phys A 2012;106(2):279–93. 链接1

[16] Chiari G, Sarrazin P, Heginbotham A. Non-conventional applications of a noninvasive portable X-ray diffraction/fluorescence instrument. Appl Phys A 2016;122(11):990. 链接1

[17] FAST SDD ultra high performance silicon drift detector [Internet]. Bedford: AMPTEK, Inc.; c2019 [cited Jan. 18, 2022]. Available from: https://www. amptek.com/products/x-ray-detectors/fastsdd-x-ray-detectors-for-xrfeds/fastsdd-silicon-drift-detector.

[18] Rebuffi L, del Rio MS. OASYS (orange synchrotron suite): an open-source graphical environment for X-ray virtual experiments. In: Chubar O, Sawhney K, editors. Proceedings Volume 10388: advances in computational methods for X-ray optics IV; 2017 Aug 6–10; San Diego, CA, USA; 2017.

[19] Salavati-Niasari M, Davar F, Loghman-Estarki MR. Long chain polymer assisted synthesis of flower-like cadmium sulfide nanorods via hydrothermal process. J Alloys Compd 2009;481(1-2):776–80. 链接1

[20] Scarlett NVY, Madsen IC, Evans JSO, Coelho AA, McGregor K, Rowles M, et al. Energy-dispersive diffraction studies of inert anodes. J Appl Cryst 2009;42 (3):502–12. 链接1

[21] Wollman DA, Irwin KD, Hilton GC, Dulcie LL, Newbury DE, Martinis JM. Highresolution, energy-dispersive microcalorimeter spectrometer for X-ray microanalysis. J Microsc 1997;188(3):196–223. 链接1

[22] Ordavo I, Ihle S, Arkadiev V, Scharf O, Soltau H, Bjeoumikhov A, et al. A new pnCCD-based color X-ray camera for fast spatial and energy-resolved measurements. Nucl Instrum Meth A 2011;654(1):250–7. 链接1

[23] Ryan CG, Siddons DP, Kirkham R, Li ZY, de Jonge MD, Paterson DJ, et al. Maia Xray fluorescence imaging: capturing detail in complex natural samples. J Phys Conf Ser 2014;499:012002. 链接1

[24] Schroeder G. Summary of NSLS-II Source Properties [Internet]. Upton: Brookhaven National Laboratory; [cited Jan.18, 2022]. Available from: https://www.bnl.gov/nsls2/docs/PDF/Summary_of_NSLS-II_Source_ Properties.pdf. 链接1

相关研究