期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2021年 第7卷 第7期 doi: 10.1016/j.eng.2021.06.004

黑磷基异质结构光催化剂

a Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China
b State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, China

收稿日期: 2019-04-15 修回日期: 2019-07-30 录用日期: 2019-08-20 发布日期: 2021-06-04

下一篇 上一篇

摘要

半导体光催化是解决全球能源短缺和环境污染问题的潜在途径。黑磷(BP)具有空穴迁移率高、带隙可调、光吸收范围宽等特点,在光催化领域得到了广泛的应用。然而,由于未经处理的BP的光生载流子分离效率较低,其光催化活性仍然较低。BP基异质结构光催化剂具有更高的光生载流子分离效率,其研制设计已成为近年来光催化领域的研究热点。本文总结了BP及其异质结构光催化剂的设计、合成、性能和应用方面的进展,阐述了BP基异质结构光催化剂在分解水、污染物降解、二氧化碳还原、固氮、杀菌消毒和有机合成中的应用,阐明了BP基异质结构光催化剂设计的机遇和挑战。该综述将促进BP基异质结构光催化剂在能量转换和环境修复中的发展和应用。

图片

图1

图2

图3

图4

图5

图6

图7

图8

图9

图10

图11

图12

参考文献

[ 1 ] Shao B, Liu X, Liu Z, Zeng G, Liang Q, Liang C, et al. A novel double Z-scheme photocatalyst Ag3PO4/Bi2S3/Bi2O3 with enhanced visible-light photocatalytic performance for antibiotic degradation. Chem Eng J 2019;368:730–45. 链接1

[ 2 ] Shao B, Liu X, Liu Z, Zeng G, Zhang W, Liang Q, et al. Synthesis and characterization of 2D/0D g-C3N4/CdS-nitrogen doped hollow carbon spheres (NHCs) composites with enhanced visible light photodegradation activity for antibiotic. Chem Eng J 2019;374:479–93. 链接1

[ 3 ] Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972;238(5358):37–8. 链接1

[ 4 ] Yu S, Yun HJ, Kim YH, Yi J. Carbon-doped TiO2 nanoparticles wrapped with nanographene as a high performance photocatalyst for phenol degradation under visible light irradiation. Appl Catal B 2014;144:893–9. 链接1

[ 5 ] Jiao X, Li X, Jin X, Sun Y, Xu J, Liang L, et al. Partially oxidized SnS2 atomic layers achieving efficient visible-light-driven CO2 reduction. J Am Chem Soc 2017;139(49):18044–51. 链接1

[ 6 ] Tian J, Cheng N, Liu Q, Xing W, Sun X. Cobalt phosphide nanowires: efficient nanostructures for fluorescence sensing of biomolecules and photocatalytic evolution of dihydrogen from water under visible light. Angew Chem Int Ed Engl 2015;54(18):5493–7. 链接1

[ 7 ] Su Z, Wang L, Grigorescu S, Lee K, Schmuki P. Hydrothermal growth of highly oriented single crystalline Ta2O5 nanorod arrays and their conversion to Ta3N5 for efficient solar driven water splitting. Chem Commun 2014;50 (98):15561–4. 链接1

[ 8 ] Hisatomi T, Katayama C, Moriya Y, Minegishi T, Katayama M, Nishiyama H, et al. Photocatalytic oxygen evolution using BaNbO2N modified with cobalt oxide under photoexcitation up to 740 nm. Energy Environ Sci 2013;6 (12):3595–9. 链接1

[ 9 ] Wang X, Maeda K, Thomas A, Takanabe K, Xin G, Carlsson JM, et al. A metalfree polymeric photocatalyst for hydrogen production from water under visible light. Nat Mater 2009;8(1):76–80. 链接1

[10] Shao B, Liu Z, Zeng G, Wu Z, Liu Y, Cheng M, et al. Nitrogen-doped hollow mesoporous carbon spheres modified g-C3N4/Bi2O3 direct dual semiconductor photocatalytic system with enhanced antibiotics degradation under visible light. ACS Sustain Chem Eng 2018;6(12):16424–36. 链接1

[11] Chiou YD, Hsu YJ. Room-temperature synthesis of single-crystalline Se nanorods with remarkable photocatalytic properties. Appl Catal B 2011;105 (1–2):211–9. 链接1

[12] Liu G, Niu P, Yin L, Cheng HM. a-Sulfur crystals as a visible-light-active photocatalyst. J Am Chem Soc 2012;134(22):9070–3. 链接1

[13] Liu G, Yin LC, Niu P, Jiao W, Cheng HM. Visible-light-responsive brhombohedral boron photocatalysts. Angew Chem Int Ed Engl 2013;52 (24):6242–5. 链接1

[14] Xing M, Fang W, Yang X, Tian B, Zhang J. Highly-dispersed boron-doped graphene nanoribbons with enhanced conductibility and photocatalysis. Chem Commun 2014;50(50):6637–40. 链接1

[15] Hu Z, Yuan L, Liu Z, Shen Z, Yu JC. An elemental phosphorus photocatalyst with a record high hydrogen evolution efficiency. Angew Chem Int Ed Engl 2016;55 (33):9580–5. 链接1

[16] Vishnoi P, Gupta U, Pandey R, Rao CNR. Stable functionalized phosphorenes with photocatalytic HER activity. J Mater Chem A 2019;7(12):6631–7. 链接1

[17] Zheng Y, Chen Y, Gao B, Chen J, Du Z, Lin B. Polymeric carbon nitride hybridized by CuInS2 quantum dots for photocatalytic hydrogen evolution. Mater Lett 2019;254:81–4. 链接1

[18] Li L, Yu Y, Ye GJ, Ge Q, Ou X, Wu H, et al. Black phosphorus field-effect transistors. Nat Nanotechnol 2014;9(5):372–7. 链接1

[19] Huang YC, Chen X, Wang C, Peng L, Qian Q, Wang SF. Layer-dependent electronic properties of phosphorene-like materials and phosphorene-based van der Waals heterostructures. Nanoscale 2017;9(25):8616–22. 链接1

[20] Wang C, Peng L, Qian Q, Du J, Wang S, Huang Y. Tuning the carrier confinement in GeS/phosphorene van der Waals heterostructures. Small 2018;14 (10):201703536. 链接1

[21] Rahman MZ, Kwong CW, Davey K, Qiao SZ. 2D phosphorene as a water splitting photocatalyst: fundamentals to applications. Energy Environ Sci 2016;9(3):709–28. Erratum in: Energy Environ Sci 2016;9(4):1513–4.

[22] Feng R, Lei W, Liu G, Liu M. Visible- and NIR-light responsive blackphosphorus-based nanostructures in solar fuel production and environmental remediation. Adv Mater 2018;30(49):e1804770. 链接1

[23] Muduli SK, Varrla E, Xu Y, Kulkarni SA, Katre A, Chakraborty S, et al. Evolution of hydrogen by few-layered black phosphorus under visible illumination. J Mater Chem A 2017;5(47):24874–9. 链接1

[24] Li B, Lai C, Zeng G, Huang D, Qin L, Zhang M, et al. Black phosphorus, a rising star 2D nanomaterial in the post-graphene era: synthesis, properties, modifications, and photocatalysis applications. Small 2019;15(8):e1804565. 链接1

[25] Sa B, Li YL, Qi J, Ahuja R, Sun Z. Strain engineering for phosphorene: the potential application as a photocatalyst. J Phys Chem C 2014;118 (46):26560–8. 链接1

[26] Rahman MZ, Batmunkh M, Bat-Erdene M, Shapter JG, Mullins CB. p-Type BP nanosheet photocatalyst with AQE of 3.9% in the absence of a noble metal cocatalyst: investigation and elucidation of photophysical properties. J Mater Chem A 2018;6(38):18403–8. 链接1

[27] Zhu X, Zhang T, Sun Z, Chen H, Guan J, Chen X, et al. Black phosphorus revisited: a missing metal-free elemental photocatalyst for visible light hydrogen evolution. Adv Mater 2017;29(17):201605776. 链接1

[28] Tian B, Tian B, Smith B, Scott MC, Lei Q, Hua R, et al. Facile bottom-up synthesis of partially oxidized black phosphorus nanosheets as metal-free photocatalyst for hydrogen evolution. Proc Natl Acad Sci USA 2018;115(17):4345–50. 链接1

[29] Zhao G, Wang T, Shao Y, Wu Y, Huang B, Hao X. A novel mild phase-transition to prepare black phosphorus nanosheets with excellent energy applications. Small 2017;13(7):201602243. 链接1

[30] Liang Q, Liu X, Zeng G, Liu Z, Tang L, Shao B, et al. Surfactant-assisted synthesis of photocatalysts: mechanism, synthesis, recent advances and environmental application. Chem Eng J 2019;372:429–51. 链接1

[31] Ran J, Wang X, Zhu B, Qiao SZ. Strongly interactive 0D/2D hetero-structure of a ZnxCd1xS nano-particle decorated phosphorene nano-sheet for enhanced visible-light photocatalytic H2 production. Chem Commun 2017;53 (71):9882–5. 链接1

[32] Zhao H, Liu H, Sun R, Chen Y, Li X. A Zn0.5Cd0.5S photocatalyst modified by 2D black phosphorus for efficient hydrogen evolution from water. ChemCatChem 2018;10(19):4395–405. 链接1

[33] Wu J, Huang S, Jin Z, Chen J, Hu L, Long Y, et al. Black phosphorus: an efficient co-catalyst for charge separation and enhanced photocatalytic hydrogen evolution. J Mater Sci 2018;53(24):16557–66. 链接1

[34] Elbanna O, Zhu M, Fujitsuka M, Majima T. Black phosphorus sensitized TiO2 mesocrystal photocatalyst for hydrogen evolution with visible and nearinfrared light irradiation. ACS Catal 2019;9(4):3618–26. 链接1

[35] Ran J, Zhu B, Qiao SZ. Phosphorene co-catalyst advancing highly efficient visible-light photocatalytic hydrogen production. Angew Chem Int Ed Engl 2017;56(35):10373–7. 链接1

[36] Zhu M, Zhai C, Fujitsuka M, Majima T. Noble metal-free near-infrared-driven photocatalyst for hydrogen production based on 2D hybrid of black phosphorus/WS2. Appl Catal B 2018;221:645–51. 链接1

[37] Yuan YJ, Wang P, Li Z, Wu Y, Bai W, Su Y, et al. The role of bandgap and interface in enhancing photocatalytic H2 generation activity of 2D–2D black phosphorus/MoS2 photocatalyst. Appl Catal B 2019;242:1–8. 链接1

[38] Tian B, Tian B, Smith B, Scott MC, Hua R, Lei Q, et al. Supported black phosphorus nanosheets as hydrogen-evolving photocatalyst achieving 5.4% energy conversion efficiency at 353 K. Nat Commun 2018;9(1):1397. 链接1

[39] Liang Q, Shi F, Xiao X, Wu X, Huang K, Feng S. In situ growth of CoP nanoparticles anchored on black phosphorus nanosheets for enhanced photocatalytic hydrogen production. ChemCatChem 2018;10(10):2179–83. 链接1

[40] Zhu M, Kim S, Mao L, Fujitsuka M, Zhang J, Wang X, et al. Metal-free photocatalyst for H2 evolution in visible to near-infrared region: black phosphorus/graphitic carbon nitride. J Am Chem Soc 2017;139(37):13234–42. 链接1

[41] Ran J, Guo W, Wang H, Zhu B, Yu J, Qiao SZ. Metal-free 2D/2D phosphorene/gC3N4 van der Waals heterojunction for highly enhanced visible-light photocatalytic H2 production. Adv Mater 2018;30(25):1800128. 链接1

[42] Kong LQ, Ji YJ, Dang ZZ, Yan JQ, Li P, Li YY, et al. g-C3N4 loading black phosphorus quantum dot for efficient and stable photocatalytic H2 generation under visible light. Adv Funct Mater 2018;28(22):1800668. 链接1

[43] Lei W, Mi Y, Feng R, Liu P, Hu S, Yu J, et al. Hybrid 0D–2D black phosphorus quantum dots-graphitic carbon nitride nanosheets for efficient hydrogen evolution. Nano Energy 2018;50:552–61. 链接1

[44] Song T, Zeng G, Zhang P, Wang T, Ali A, Huang S, et al. 3D reticulated carbon nitride materials high uniformly capture 0D black phosphorus as /0D composites for stable and efficient photocatalytic hydrogen evolution. J Mater Chem A 2019;7(2):503–12. 链接1

[45] Zhu M, Osakada Y, Kim S, Fujitsuka M, Majima T. Black phosphorus: a promising two dimensional visible and near-infrared-activated photocatalyst for hydrogen evolution. Appl Catal B 2017;217:285–92. 链接1

[46] Hu J, Chen D, Mo Z, Li N, Xu Q, Li H, et al. Z-scheme 2D/2D heterojunction of black phosphorus/monolayer Bi2WO6 nanosheets with enhanced photocatalytic activities. Angew Chem Int Ed Engl 2019;58(7):2073–7. 链接1

[47] Zhu M, Sun Z, Fujitsuka M, Majima T. Z-scheme photocatalytic water splitting on a 2D heterostructure of black phosphorus/bismuth vanadate using visible light. Angew Chem Int Ed Engl 2018;57(8):2160–4. 链接1

[48] Zhu M, Cai X, Fujitsuka M, Zhang J, Majima T. Au/La2Ti2O7 nanostructures sensitized with black phosphorus for plasmon-enhanced photocatalytic hydrogen production in visible and near-infrared light. Angew Chem Int Ed 2017;56(8):2064–8. 链接1

[49] Cai X, Mao L, Yang S, Han K, Zhang J. Ultrafast charge separation for full solar spectrum-activated photocatalytic H2 generation in a black phosphorus–Au– CdS heterostructure. ACS Energy Lett 2018;3(4):932–9. 链接1

[50] Mao L, Cai X, Yang S, Han K, Zhang J. Black phosphorus–CdS–La2Ti2O7 ternary composite: effective noble metal-free photocatalyst for full solar spectrum activated H2 production. Appl Catal B 2019;242:441–8. 链接1

[51] Reddy DA, Kim EH, Gopannagari M, Kim Y, Kumar DP, Kim TK. Few layered black phosphorus/MoS2 nanohybrid: a promising co-catalyst for solar driven hydrogen evolution. Appl Catal B 2019;241:491–8. 链接1

[52] Boppella R, Yang W, Tan J, Kwon HC, Park J, Moon J. Black phosphorus supported Ni2P co-catalyst on graphitic carbon nitride enabling simultaneous boosting charge separation and surface reaction. Appl Catal B 2019;242:422–30. 链接1

[53] Wen M, Wang J, Tong R, Liu D, Huang H, Yu Y, et al. A low-cost metal-free photocatalyst based on black phosphorus. Adv Sci 2019;6(1):1801321. 链接1

[54] Yan J, Ji Y, Kong L, Li Y, Navlani-García M, Liu S, et al. Black phosphorus-based compound with few layers for photocatalytic water oxidation. ChemCatChem 2018;10(16):3424–8. 链接1

[55] Wang H, Yang X, Shao W, Chen S, Xie J, Zhang X, et al. Ultrathin black phosphorus nanosheets for efficient singlet oxygen generation. J Am Chem Soc 2015;137(35):11376–82. 链接1

[56] Wang H, Jiang S, Shao W, Zhang X, Chen S, Sun X, et al. Optically switchable photocatalysis in ultrathin black phosphorus nanosheets. J Am Chem Soc 2018;140(9):3474–80. 链接1

[57] Pan S, He J, Wang C, Zuo Y. Exfoliation of two-dimensional phosphorene sheets with enhanced photocatalytic activity under simulated sunlight. Mater Lett 2018;212:311–4. 链接1

[58] Yuan YJ, Yang S, Wang P, Yang Y, Li Z, Chen D, et al. Bandgap-tunable black phosphorus quantum dots: visible-light-active photocatalysts. Chem Commun 2018;54(8):960–3. 链接1

[59] Li X, Li F, Lu X, Zuo S, Zhuang Z, Yao C. Black phosphorus quantum dots/ attapulgite nanocomposite with enhanced photocatalytic performance. Funct Mater Lett 2017;10(6):1750078. 链接1

[60] Yan J, Verma P, Kuwahara Y, Mori K, Yamashita H. Recent progress on black phosphorus-based materials for photocatalytic water splitting. Small Methods 2018;2(12):1800212. 链接1

[61] Lei W, Zhang T, Liu P, Rodriguez JA, Liu G, Liu M. Bandgap- and local fielddependent photoactivity of Ag/black phosphorus nanohybrids. ACS Catal 2016;6(12):8009–20. 链接1

[62] Liu Y, Zhou M, Zhang W, Chen K, Mei A, Zhang Y, et al. Enhanced photocatalytic properties of TiO2 nanosheets@2D layered black phosphorus composite with high stability under hydro-oxygen environment. Nanoscale 2019;11 (12):5674–83. 链接1

[63] Lee HU, Lee SC, Won J, Son BC, Choi S, Kim Y, et al. Stable semiconductor black phosphorus (BP)@titanium dioxide (TiO2) hybrid photocatalysts. Sci Rep 2015;5(1):8691. 链接1

[64] He C, Qian H, Li X, Yan X, Zuo S, Qian J, et al. Visible-light-driven CeO2/black phosphorus heterostructure with enhanced photocatalytic performance. J Mater Sci Mater Electron 2019;30(1):593–9. 链接1

[65] Feng R, Lei W, Sui X, Liu X, Qi X, Tang K, et al. Anchoring black phosphorus quantum dots on molybdenum disulfide nanosheets: a 0D/2D nanohybrid with enhanced visible- and NIR-light photoactivity. Appl Catal B 2018;238:444–53. 链接1

[66] Wang L, Xu Q, Xu J, Weng J. Synthesis of hybrid nanocomposites of ZIF-8 with two-dimensional black phosphorus for photocatalysis. RSC Adv 2016;6 (73):69033–9. 链接1

[67] Shen Z, Sun S, Wang W, Liu J, Liu Z, Yu JC. A black–red phosphorus heterostructure for efficient visible-light-driven photocatalysis. J Mater Chem A 2015;3(7):3285–8. 链接1

[68] He D, Zhang Z, Qu J, Yuan X, Guan J. Facile one-step synthesis of black phosphorus via microwave irradiation with excellent photocatalytic activity. Part Part Syst Charact 2018;35(11):1800306. 链接1

[69] Qiu P, Xu C, Zhou N, Chen H, Jiang F. Metal-free black phosphorus nanosheetsdecorated graphitic carbon nitride nanosheets with C–P bonds for excellent photocatalytic nitrogen fixation. Appl Catal B 2018;221:27–35. 链接1

[70] Zheng Y, Yu Z, Ou H, Asiri AM, Chen Y, Wang X. Black phosphorus and polymeric carbon nitride heterostructure for photoinduced molecular oxygen activation. Adv Funct Mater 2018;28(10):1705407. 链接1

[71] Zhu X, Zhang T, Jiang D, Duan H, Sun Z, Zhang M, et al. Stabilizing black phosphorus nanosheets via edge-selective bonding of sacrificial C60 molecules. Nat Commun 2018;9(1):4177. 链接1

[72] Zhang Z, He D, Liu H, Ren M, Zhang Y, Qu J, et al. Synthesis of graphene/black phosphorus hybrid with highly stable P–C bond towards the enhancement of photocatalytic activity. Environ Pollut 2019;245:950–6. 链接1

[73] Wang X, Xiang Y, Zhou B, Zhang Y, Wu J, Hu R, et al. Enhanced photocatalytic performance of Ag/TiO2 nanohybrid sensitized by black phosphorus nanosheets in visible and near-infrared light. J Colloid Interface Sci 2019;534:1–11. 链接1

[74] Wang X, Zhou B, Zhang Y, Liu L, Song J, Hu R, et al. In-situ reduction and deposition of Ag nanoparticles on black phosphorus nanosheets co-loaded with graphene oxide as a broad spectrum photocatalyst for enhanced photocatalytic performance. J Alloys Compd 2018;769:316–24. 链接1

[75] Hu J, Ji Y, Mo Z, Li N, Xu Q, Li Y, et al. Engineering black phosphorus to porous g-C3N4–metal–organic framework membrane: a platform for highly boosting photocatalytic performance. J Mater Chem A 2019;7(9):4408–14. 链接1

[76] Han C, Li J, Ma Z, Xie H, Waterhouse GIN, Ye L, et al. Black phosphorus quantum dot/g-C3N4 composites for enhanced CO2 photoreduction to CO. Sci Chin Mater 2018;61(9):1159–66. 链接1

[77] Hu J, Guo Z, McWilliams PE, Darges JE, Druffel DL, Moran AM, et al. Band gap engineering in a 2D material for solar-to-chemical energy conversion. Nano Lett 2016;16(1):74–9. 链接1

[78] Bai L, Wang X, Tang S, Kang Y, Wang J, Yu Y, et al. Black phosphorus/platinum heterostructure: a highly efficient photocatalyst for solar-driven chemical reactions. Adv Mater 2018;30(40):1803641. 链接1

[79] Zhou Q, Chen Q, Tong Y, Wang J. Light-induced ambient degradation of fewlayer black phosphorus: mechanism and protection. Angew Chem Int Ed Engl 2016;55(38):11437–41. 链接1

[80] Tang X, Liang W, Zhao J, Li Z, Qiu M, Fan T, et al. Fluorinated phosphorene: electrochemical synthesis, atomistic fluorination, and enhanced stability. Small 2017;13(47):201702739. 链接1

[81] Liu Y, Liu Z, Huang D, Cheng M, Zeng G, Lai C, et al. Metal or metal-containing nanoparticle@MOF nanocomposites as a promising type of photocatalyst. Coord Chem Rev 2019;388:63–78. 链接1

相关研究