期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2021年 第7卷 第8期 doi: 10.1016/j.eng.2021.06.006

基于紧缩McCormick方法的热电联合系统优化调度策略

a Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen 518055, China
b State Key Laboratory of Power Systems, Department of Electrical Engineering, Tsinghua University, Beijing 100084, China
c State Grid Jilin Electric Power Supply Co. Ltd., Changchun 130000, China
d Harbin Institute of Technology, Harbin 150006, China

收稿日期: 2020-08-10 修回日期: 2020-12-24 录用日期: 2021-04-08 发布日期: 2021-06-24

下一篇 上一篇

摘要

质量流量可调的热电联合系统可以提高能源系统的灵活性、经济性和可持续发展能力。但是,考虑质量流量可调的热电联合系统的优化运行问题是一个高度非凸非线性的问题,主要体现在热力网络模型中的双线性项,即质量流量和节点温度的乘积。现有的方法,如非线性优化、广义Benders分解方法和凸松弛技术等,在求解质量和计算性能上仍然存在不足。为了解决这一问题,本文首先建立了基于质量-流量调节的区域供热网络的基础模型,并通过等效变换和变量代换对基础模型进行了重构。该重构模型减少了非凸约束和双线性项,而且在不失去最优性的前提下,加快了求解过程。然后,文中分别建立了电力网络模型和能源模型,结合之前构造的供热网络模型,建立起热电联合系统优化调度模型。为了松弛联合调度模型中剩余的双线性项,文中采用McCormick包络的凸松弛方法,得到了联合调度模型的目标函数下界。为了提高McCormick松弛的质量,文中提出了一种紧缩McCormick的方法:首先 ,采用分段McCormick技术,将双线性项中一个变量的可行域划分为几个不相交的区域,通过求解此优化问题可以选出最优解所在的区域,从而缩小了被划分变量的可行域;然后,提出了一种启发式的边界收缩算法来进一步压缩分段McCormick技术得到的缩小版可行域,并恢复了此最优解附近的可行解。算例分析表明,与原对偶内点法和求得全局最优解的双线性求解器提供的方法相比,本文提出的紧缩McCormick方法能快速求解热电联合运行问题,得到令人满意的兼具最优性和可行性的调度结果。

图片

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6

Fig. 7

参考文献

[ 1 ] IUte C. Renewable heat policies. Report. Paris: IEA; 2018 Jan.

[ 2 ] State of Green. District energy: green heating and cooling for urban areas. Report. Denmark: State of Green; 2020 May.

[ 3 ] Østergaard PA, Lund H. A renewable energy system in Frederikshavn using low-temperature geothermal energy for district heating. Appl Energy 2011;88 (2):479–87. 链接1

[ 4 ] Liu X, Wu J, Jenkins N, Bagdanavicius A. Combined analysis of electricity and heat networks. Appl Energy 2016;162:1238–50. 链接1

[ 5 ] Sheng T, Guo Q, Sun H, Pan Z, Zhang J. Two-stage state estimation approach for combined heat and electric networks considering the dynamic property of pipelines. Energy Procedia 2017;142:3014–9. 链接1

[ 6 ] Li Z, Wu W, Wang J, Zhang B, Zheng T. Transmission-constrained unit commitment considering combined electricity and district heating networks. IEEE Trans Sustain Energy 2015;7(2):480–92. 链接1

[ 7 ] Lin C, Wu W, Zhang B, Sun Y. Decentralized solution for combined heat and power dispatch through benders decomposition. IEEE Trans Sustain Energy 2017;8(4):1361–72. 链接1

[ 8 ] Pan Z, Guo Q, Sun H. Feasible region method based integrated heat and electricity dispatch considering building thermal inertia. Appl Energy 2017;192:395–407. 链接1

[ 9 ] Xue Y, Li Z, Lin C, Guo Q, Sun H. Coordinated dispatch of integrated electric and district heating systems using heterogeneous decomposition. IEEE Trans Sustain Energy 2019;11(4):1495–507. 链接1

[10] Deng L, Li Z, Sun H, Guo Q, Xu Y, Chen R, et al. Generalized locational marginal pricing in a heat-and-electricity-integrated market. IEEE Trans Smart Grid 2019;10(6):6414–25. 链接1

[11] Deng L, Zhang X, Sun H. Real-time autonomous trading in the electricity-andheat distribution market based on blockchain. In: 2019 IEEE Power Energy Society General Meeting; 2019 Aug 4–8; Atlanta, GA, USA. New York: IEEE; 2019. p. 1–5.

[12] Kopanos GM, Georgiadis MC, Pistikopoulos EN. Energy production planning of a network of micro combined heat and power generators. Appl Energy 2013;102:1522–34. 链接1

[13] Zidan A, Gabbar HA, Eldessouky A. Optimal planning of combined heat and power systems within microgrids. Energy 2015;93(Pt 1):235–44. 链接1

[14] Li Z, Wu W, Shahidehpour M, Wang J, Zhang B. Combined heat and power dispatch considering pipeline energy storage of district heating network. IEEE Trans Sustain Energy 2015;7(1):12–22. 链接1

[15] Chen Y, Guo Q, Sun H, Li Z, Pan Z, Wu W. A water mass method and its application to integrated heat and electricity dispatch considering thermal inertias. Energy 2019;181:840–52. 链接1

[16] Huang S, Tang W, Wu Q, Li C. Network constrained economic dispatch of integrated heat and electricity systems through mixed integer conic programming. Energy 2019;179:464–74. 链接1

[17] Lu S, Gu W, Zhang C, Meng K, Dong Z. Hydraulic-thermal cooperative optimization of integrated energy systems: a convex optimization approach. IEEE Trans Smart Grid 2020;11(6):4818–32. 链接1

[18] Jiang Y, Wan C, Botterud A, Song Y, Shahidehpour M. Convex relaxation of combined heat and power dispatch. 2020. arXiv:2006.04028v1.

[19] Gupte A. Mixed integer bilinear programming with applications to the pooling problem [dissertation]. Atlanta: Georgia Institute of Technology; 2012. 链接1

[20] Castro PM. Tightening piecewise McCormick relaxations for bilinear problems. Comput Chem Eng 2015;72:300–11. 链接1

[21] Gurobi optimizer reference manual. Beaverton: Gurobi Optimization, LLC;2020.

[22] Liu X. Combined analysis of electricity and heat networks [dissertation]. Cardiff: Cardiff University; 2013. 链接1

[23] Ministry of Housing and Urban-Rural Development of the People’s Republic of China (MOHURD). CJJ 34–2010: Design code for city heating network. Chinese standard. Beijing: China Architecture Publishing & Media Co., Ltd.; 2010. Chinese.

[24] Yang J, Zhang N, Kang C, Xia Q. A State-independent linear power flow model with accurate estimation of voltage magnitude. IEEE Trans Power Syst 2017;32 (5):3607–17. 链接1

[25] Sjödin J, Henning D. Calculating the marginal costs of a district-heating utility. Appl Energy 2004;78(1):1–18. 链接1

[26] Chen X, Kang C, O’Malley M, Xia Q, Bai J, Liu C, et al. Increasing the flexibility of combined heat and power for wind power integration in China: modeling and implications. IEEE Trans Power Syst 2014;30(4):1848–57. 链接1

[27] Zimmerman RD, Murillo-Sánchez CE, Gan D. MATPOWER: a MATLAB power system simulation package. Version 3.2. New York: Power Systems Engineering Research Center; 1997. 链接1

[28] Kalambe S, Agnihotri G. Loss minimization techniques used in distribution network: bibliographical survey. Renew Sustain Energy Rev 2014;29:184–200. 链接1

[29] Eldridge B, O’Neill R, Castillo A. An improved method for the DCOPF with losses. IEEE Trans Power Syst 2017;33(4):3779–88. 链接1

[30] Ramos ER, Martinez-Ramos JL, Exposito AG, Salado AJU. Optimal reconfiguration of distribution networks for power loss reduction. In: 2001 IEEE Porto Power Tech Proceedings; 2001 Sep 10–13; Porto, Portugal. New York: IEEE; 2001.

[31] McCormick GP. Computability of global solutions to factorable nonconvex programs: part I—convex underestimating problems. Math Program 1976;10 (1):147–75. 链接1

[32] Karuppiah R, Grossmann IE. Global optimization for the synthesis of integrated water systems in chemical processes. Comput Chem Eng 2006;30(4):650–73. 链接1

[33] Chen S, Conejo AJ, Sioshansi R, Wei Z. Unit commitment with an enhanced natural gas-flow model. IEEE Trans Power Syst 2019;34(5):3729–38. 链接1

[34] Deng L. Test data for the day-ahead planning problem of integrated heat and electricity systems [Internet]. Shenzhen: Tsinghua–Berkeley Shenzhen Institute; 2020 [cited 2020 Aug 8]. Available from: https://docs.google.com/ spreadsheets/d/1px21mm7BfATtTo11SStwiEEBSSpwy4JAP6Sn7O6TX_U. 链接1

相关研究