期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2023年 第22卷 第3期 doi: 10.1016/j.eng.2021.06.027

基于TLBO算法的不确定性条件下复杂产品协同设计的可靠性拓扑优化

a State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China
b Key Laboratory of Advanced Manufacturing Technology of Zhejiang Province, Zhejiang University, Hangzhou 310027, China

收稿日期: 2020-11-26 修回日期: 2021-06-15 录用日期: 2021-06-20 发布日期: 2021-10-19

下一篇 上一篇

摘要

复杂产品的拓扑优化设计可以显著改善材料和节能,有效地降低惯性力和机械振动。本研究选择了一种大吨位液压机作为典型的复杂产品,用以表述这种优化方法。基于可靠性和优化解耦模型与基于教与学优化(TLBO)算法,本文提出了一种可靠性拓扑优化方法。将由板系结构形成的支撑物作为拓扑优化对象,具有轻量化和稳定性好的特点。将某种不确定性下的可靠性优化和结构拓扑优化协同处理。首先,利用有限差分法将优化问题中的不确定性参数修正为确定性参数。然后,将不确定性可靠性分析和拓扑优化的复杂嵌套解耦。最后,利用TLBO算法求解解耦模型。该算法参数少,求解速度快。TLBO算法采用了自适应教学因子,在初始阶段实现了更快的收敛速度,并在后期阶段进行了更精细的搜索。本文给出了一个液压机基板结构的数值实例,验证了该方法的有效性。

图片

图1

图2

图3

图4

图5

图6

图7

图8

图9

图10

图11

参考文献

[ 1 ] 2018-temporal dynamics and spatial distribution of global carbon source and sink. Report. Beijing: Ministry of Science and Technology of the People’s Republic of China; 2018. 链接1

[ 2 ] Zhang M, Yang Z, Liu L, Zhou D. Impact of renewable energy investment on carbon emissions in China—an empirical study using a nonparametric additive regression model. Sci Total Environ 2021;785:147109. 链接1

[ 3 ] Yi J. Study on carbon emission efficiency of China’s industrial industry and analysis of its influencing factors. Low Carbon Econ 2017;8(1):20‒30.

[ 4 ] Wagener HW. New developments in sheet metal forming: sheet materials, tools and machinery. J Mater Process Technol 1997;72(3):342‒57. 链接1

[ 5 ] Lee MG, Kim C, Pavlina EJ, Barlat F. Advances in sheet forming—materials modeling, numerical simulation, and press technologies. J Manuf Sci Eng 2011;133(6):1001‒12. 链接1

[ 6 ] Shen J, Tang P, Zeng H. Does China’s carbon emission trading reduce carbon emissions? Evidence from listed firms. Energy Sustain Dev 2020;59:120‒9. 链接1

[ 7 ] Duflou JR, Sutherland JW, Dornfeld D, Herrmann C, Jeswiet J, Kara S, et al. Towards energy and resource efficient manufacturing: a processes and systems approach. CIRP Ann 2012;61(2):587‒609. 链接1

[ 8 ] Feng Y, Gao Y, Tian G, Li Z, Hu H, Zheng H. Flexible process planning and end-of-life decision-making for product recovery optimization based on hybrid disassembly. IEEE Trans Autom Sci Eng 2019;16(1):311‒26. 链接1

[ 9 ] Li L, Huang H, Zhao F, Sutherland JW, Liu Z. An energy-saving method by balancing the load of operations for hydraulic press. IEEE/ASME Trans Mechatron 2017;22(6):2673‒83. 链接1

[10] Caliskan O, Akkaya AV. Modifying hydraulic press brake by variable speed drive application: energy saving, CO2 reduction, and economic analysis. Energy Effic 2020;13(6):1031‒46. 链接1

[11] Yan X, Chen B, Zhang D, Wu C, Luo W. An energy-saving method to reduce the installed power of hydraulic press machines. J Clean Prod 2019;233:538‒45. 链接1

[12] Xu Z, Liu Y, Hua L, Zhao X, Guo W. Energy analysis and optimization of main hydraulic system in 10 000 kN fine blanking press with simulation and experimental methods. Energy Convers Manage 2019;181:143‒58. 链接1

[13] Strano M, Monno M, Rossi A. Optimized design of press frames with respect to energy efficiency. J Clean Prod 2013;41:140‒9. 链接1

[14] Li B, Hong J, Liu Z. A novel topology optimization method of welded box-beam structures motivated by low-carbon manufacturing concerns. J Clean Prod 2017;142(4):2792‒803. 链接1

[15] Liu H, Li B, Tang W. Manufacturing oriented topology optimization of 3D structures for carbon emission reduction in casting process. J Clean Prod 2019;225:755‒70. 链接1

[16] Cazacu R, Grama L. Steel truss optimization using genetic algorithms and FEA. Procedia Technol 2014;12:339‒46. 链接1

[17] Duan ZD, Wu JJ. Topological optimization of frame of high speed hydraulic press based on generalized finite element modules. Appl Mech Mater 2010;44‒47:1828‒32.

[18] Jiao M, Guo XH, Wan DD. Finite element analysis and lightweight research on the bed of a large machine tool based on hyperworks. Appl Mech Mater 2011;121‒126:3294‒8.

[19] Zhao X, Liu Y, Hua L, Mao H. Finite element analysis and topology optimization of a 12 000 kN fine blanking press frame. Struct Multidiscip Optim 2016;54:375‒89. 链接1

[20] Lan J, Hu J, Song C, Hua L, Zhao Y. Modeling and optimization of a 10 000 kN fine blanking press frame. In: Proceedings of International Conference on Remote Sensing, Environment and Transportation Engineering; 2011 Jun 24‒26; Nanjing, China. Piscataway: IEEE; 2011. p. 8353‒7. 链接1

[21] Yan Y, Jing H, Zhang D, Chen Z, Huang X. Optimization design of heavy load-bearing frame—discussing about the 1200 MN hydraulic press: I. Forg Stamping Technol 2013;38(6):1‒13. Chinese.

[22] Liu YW, Moses F. Truss optimization including reserve and residual reliability constraints. Comput Struct 1992;42(3):355‒63. 链接1

[23] Thampan CKPV, Krishnamoorthy CS. System reliability-based configuration optimization of trusses. J Struct Eng 2001;127(8):947‒56. 链接1

[24] Techasen T, Wansasueb K, Panagant N, Pholdee N, Bureerat S. Simultaneous topology, shape, and size optimization of trusses, taking account of uncertainties using multi-objective evolutionary algorithms. Eng Comput 2019;35(2):721‒40. 链接1

[25] Greiner D, Hajela P. Truss topology optimization for mass and reliability considerations-co-evolutionary multiobjective formulations. Struct Multidiscip Optim 2012;45(4):589‒613. 链接1

[26] Jalalpour M, Guest JK, Igusa T. Reliability-based topology optimization of trusses with stochastic stiffness. Struct Saf 2013;43:41‒9. 链接1

[27] Torii AJ, Lopez RH, Biondini F. An approach to reliability-based shape and topology optimization of truss structures. Eng Optim 2012;44(1):37‒53. 链接1

[28] Lou S, Feng Y, Li Z, Zheng H, Gao Y, Tan J. An edge-based distributed decision-making method for product design scheme evaluation. IEEE Trans Ind Inform 2021;17(2):1375‒85. 链接1

[29] Zhan J, Luo Y, Zhang X, Kang Z. A general assessment index for non-probabilistic reliability of structures with bounded field and parametric uncertainties. Comput Method Appl Mech Eng 2020;366:113046. 链接1

[30] Feng Y, Zhou M, Tian G, Li Z, Zhang Z, Zhang Q, et al. Target disassembly sequencing and scheme evaluation for CNC machine tools using improved multiobjective ant colony algorithm and fuzzy integral. IEEE Trans Syst Man Cybern Syst 2019;49(12):2438‒51. 链接1

[31] Wang W, Xue H, Kong T. An efficient hybrid reliability analysis method for structures involving random and interval variables. Struct Multidiscip Optim 2020;62(1):159‒73. 链接1

[32] Liu J, Wen G, Xie YM. Layout optimization of continuum structures considering the probabilistic and fuzzy directional uncertainty of applied loads based on the cloud model. Struct Multidiscip Optim 2016;53(1):81‒100. 链接1

[33] Feng Y, Hong Z, Tian G, Li Z, Tan J, Hu H. Environmentally friendly MCDM of reliability-based product optimisation combining DEMATEL-based ANP, interval uncertainty and Vlse Kriterijumska Optimizacija Kompromisno Resenje (VIKOR). Inf Sci 2018;442‒443:128‒44.

[34] Shuib S, Ridzwan MIZ, Kadarman AH. Methodology of compliant mechanisms and its current developments in applications: a review. Am J Appl Sci 2007;4(3):160‒7. 链接1

[35] Min S, Nishiwaki S, Kikuchi N. Unified topology design of static and vibrating structures using multiobjective optimization. Comput Struct 2000;75(1):93‒116. 链接1

[36] Li Y, Yang Q, Chang T, Qin T, Wu F. Multi-load cases topological optimization by weighted sum method based on load case severity degree and ideality. Adv Mech Eng 2020;12(8):1‒15. 链接1

[37] Kharmanda G, Olhoff N, Mohamed A, Lemaire M. Reliability-based topology optimization. Struct Multidiscip Optim 2004;26(5):295‒307. 链接1

[38] Rao RV, Savsani VJ, Vakharia DP. Teaching‒learning-based optimization: a novel method for constrained mechanical design optimization problems. Comput Aided Des 2011;43(3):303‒15. 链接1

[39] Singh R, Chaudhary H, Singh AK. A new hybrid teaching‒learning particle swarm optimization algorithm for synthesis of linkages to generate path. Sadhana 2017;42(11):1851‒70. 链接1

[40] George J, Manu R, Mathew J. Multi-objective optimization of roundness, cylindricity and areal surface roughness of Inconel 825 using TLBO method in wire electrical discharge turning (WEDT) process. J Braz Soc Mech Sci Eng 2019;41:377. 链接1

[41] Toğan V. Design of planar steel frames using teaching‒learning based optimization. Eng Struct 2012;34:225‒32. 链接1

[42] Degertekin SO, Hayalioglu MS. Sizing truss structures using teaching‒learning-based optimization. Comput Struct 2013;119:177‒88. 链接1

[43] Camp CV, Farshchin M. Design of space trusses using modified teaching‒learning based optimization. Eng Struct 2014;62‒63:87‒97.

[44] Dede T. Application of teaching‒learning-based-optimization algorithm for the discrete optimization of truss structures. KSCE J Civ Eng 2014;18(6):1759‒67. 链接1

[45] Rao RV, Savsani VJ, Vakharia DP. Teaching‒learning-based optimization: an optimization method for continuous non-linear large scale problems. Inf Sci 2012;183(1):1‒15. 链接1

[46] Niknam T, Azizipanah-Abarghooee R, Rasoul Narimani M. A new multi objective optimization approach based on TLBO for location of automatic voltage regulators in distribution systems. Eng Appl Artif Intell 2012;25(8):1577‒88. 链接1

[47] Hu K, Zhang C, Wang S, Han S. Optimization of scraper conveyor extensible tail PID control system based on improved TLBO algorithm. J Cent South Univ 2017;48(1):106‒11. Chinese.

相关研究