期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2022年 第13卷 第6期 doi: 10.1016/j.eng.2021.07.015

全球新冠疫情大流行——一年来世界各国汲取的经验并不多

a Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing 211166, China
b China International Cooperation Center for Environment and Human Health & Center for Global Health, Nanjing Medical University, Nanjing 211166, China
c Department of Biomedical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
d Institute for Social and Economic Research and Policy, Columbia University, NY, 10027, USA

# These authors contributed equally to this work.

收稿日期: 2021-02-23 修回日期: 2021-05-25 录用日期: 2021-07-28 发布日期: 2021-09-14

下一篇 上一篇

摘要

COVID-19席卷全球,世界各地感染人数激增;在这种情况下,许多国家采取了一系列严格的非药物干预措施,使得确诊病例增长速度有所放缓。然而,部分国家随后逐步放松防控,导致2020年7月下旬病例数突增,引起全球密切关注。本研究评估了2020年1月至2021年2月全球各个国家和地区的COVID-19大流行情况。我们计算了每个国家或地区的时依再生数[R(t)],结果表明,世界上几乎一半的国家和地区从未控制过疫情。在曾经控制住疫情的国家和地区中,近一半未能维持疫情防控,导致全球疫情出现反弹,其中一半国家或地区反弹疫情规模比第一波更大。本研究还提出并使用时依的国家级传播风险评分(CTRS),考虑到R(t)和每天的新增病例,以展示国家或地区一级的传播潜力和趋势。利用时依CTRS进行时依层次聚类,成功发现了促使2020年最后一个季度和2021年初全球COVID-19大流行加剧的国家和地区,并提示近期内COVID-19传播风险增加的国家和地区。此外,回归分析表明,实施和放松包括关闭工作场所和居家隔离在内的非药物干预措施,可能与最近的全球COVID-19传播变化有关。总而言之,对过去一年全球COVID-19大流行进行的系统评估表明,世界目前处于一种未曾设想的状况,各国在第一波疫情中吸取的教训有限。总结经验教训有助于制定有效的公共应对措施,以遏制全球未来的COVID-19疫情浪潮。

补充材料

图片

图1

图2

图3

图4

参考文献

[ 1 ] Kucharski AJ, Klepac P, Conlan AJK, Kissler SM, Tang ML, Fry H, alet; CMMID COVID-19 working group. Effectiveness of isolation, testing, contact tracing, and physical distancing on reducing transmission of SARS-CoV-2 in different settings: a mathematical modelling study. Lancet Infect Dis 2020;20(10):1151‒60. 链接1

[ 2 ] Pan A, Liu L, Wang C, Guo H, Hao X, Wang Q, et al. Association of public health interventions with the epidemiology of the COVID-19. JAMA 2020;323(19):1915‒23. 链接1

[ 3 ] Wei Y, Wei L, Jiang Y, Shen S, Zhao Y, Hao Y, et al. Implementation of clinical diagnostic criteria and universal symptom survey contributed to lower magnitude and faster resolution of the COVID-19 epidemic. Engineering 2020;6(10):1141‒6. 链接1

[ 4 ] Jefferies S, French N, Gilkison C, Graham G, Hope V, Marshall J, et al. COVID-19 in New Zealand and the impact of the national response: a descriptive epidemiological study. Lancet Public Health 2020;5(11):e612‒23. 链接1

[ 5 ] Paterlini M. COVID: 19: Italy has wasted the sacrifices of the first wave, say experts. BMJ 2020;371:m4279. 链接1

[ 6 ] Han E, Tan MMJ, Turk E, Sridhar D, Leung GM, Shibuya K, et al. Lessons learnt from easing COVID-19 restrictions: an analysis of countries and regions in Asia Pacific and Europe. Lancet 2020;396(10261):1525‒34. 链接1

[ 7 ] Tian H, Liu Y, Li Y, Wu CH, Chen B, Kraemer MUG, et al. An investigation of transmission control measures during the first 50 days of the COVID-19 epidemic. Science 2020;368(6491):638‒42. 链接1

[ 8 ] Haug N, Geyrhofer L, Londei A, Dervic E, Desvars-Larrive A, Loreto V, et al. Ranking the effectiveness of worldwide COVID-19 government interventions. Nat Hum Behav 2020;4(12):1303‒12. 链接1

[ 9 ] Hale T, Angrist N, Goldszmidt R, Kira B, Petherick A, Phillips T, et al. A global panel database of pandemic policies (Oxford COVID-19 Government Response Tracker). Nat Hum Behav 2021;5(4):529‒38. 链接1

[10] Li Y, Campbell H, Kulkarni D, Harpur A, Nundy M, Wang X, et al. The temporal association of introducing and lifting non-pharmaceutical interventions with the time-varying reproduction number (R) of SARS-CoV-2: a modelling study across 131 countries. Lancet Infect Dis 2021;21(2):193‒202. 链接1

[11] Cori A, Ferguson NM, Fraser C, Cauchemez S. A new framework and software to estimate time-varying reproduction numbers during epidemics. Am J Epidemiol 2013;178(9):1505‒12. 链接1

[12] Hao X, Cheng S, Wu D, Wu T, Lin X, Wang C. Reconstruction of the full transmission dynamics of COVID-19. Nature 2020;584(7821):420‒4. 链接1

[13] Kucharski AJ, Russell TW, Diamond C, Liu Y, Edmunds J, Funk S, et al. Early dynamics of transmission and control of COVID-19: a mathematical modelling study. Lancet Infect Dis 2020;20(5):553‒8. 链接1

[14] Lindstrom MJ, Bates DM. Newton‒Raphson and EM algorithm for linear mixed-effects models for repeated-measures data. J Am Stat Assoc 2020;83(404):1014‒22.

[15] Post LA, Argaw ST, Jones C, Moss CB, Resnick D, Singh LN, et al. A SARSCoV-2 surveillance system in Sub-Saharan Africa: modeling study for persistence and transmission to inform policy. J Med Internet Res 2020;22(11):e24248. 链接1

[16] Ogunleye OO, Basu D, Mueller D, Sneddon J, Seaton RA, Yinka-Ogunleye AF, et al. Response to the novel corona virus (COVID-19) pandemic across Africa: successes, challenges, and implications for the future. Front Pharmacol 2020;11:1205. 链接1

[17] www.worldometers.info [Internet]. New York City: Worldometer; 2021 [cited 2021 Feb 21]. Available from: https://www.worldometers.info/coronavirus/. 链接1

[18] Callejas D, Echevarría JM, Carrero Y, Rodríguez-Morales AJ, Moreira R. The SARS-CoV-2 pandemic in Latin America: the need for multidisciplinary approaches. Curr Trop Med Rep 2020;7(4):120‒5. 链接1

[19] Taylor L. How Latin America is fighting COVID-19, for better and worse. BMJ 2020;370:m3319. 链接1

[20] Rodríguez Mega E. Latin American scientists join the coronavirus vaccine race: ‘no one’s coming to rescue us’. Nature 2020;582(7813):470‒1. 链接1

[21] Li Q, Guan X, Wu P, Wang X, Zhou L, Tong Y, et al. Early transmission dynamics of novel coronavirus-infected pneumonia. N Engl J Med 2020;382(13):1199‒207. 链接1

[22] Buss LF, Prete CA, Abrahim CMM, Mendrone A, Salomon T, de Almeida-Neto C, et al. Three-quarters attack rate of SARS-CoV-2 in the Brazilian Amazon during a largely unmitigated epidemic. Science 2021;371(6526):288‒92. 链接1

[23] Liu J, Zhou Ji, Yao J, Zhang X, Li L, Xu X, et al. Impact of meteorological factors on the COVID-19 transmission: a multi-city study in China. Sci Total Environ 2020;726:138513. 链接1

[24] Pan J, Yao Y, Liu Z, Meng X, Ji JS, Qiu Y, et al. Warmer weather unlikely to reduce the COVID-19 transmission: an ecological study in 202 locations in 8 countries. Sci Total Environ 2021;753:142272. 链接1

[25] Briz-Redón Á, Serrano-Aroca Á. A spatio‒temporal analysis for exploring the effect of temperature on COVID-19 early evolution in Spain. Sci Total Environ 2020;728:138811. 链接1

[26] Yao Y, Pan J, Liu Z, Meng X, Wang W, Kan H, et al. No association of COVID-19 transmission with temperature or UV radiation in Chinese cities. Eur Respir J 2020;55(5):2000517. 链接1

[27] Jüni P, Rothenbühler M, Bobos P, Thorpe KE, da Costa BR, Fisman DN, et al. Impact of climate and public health interventions on the COVID-19 pandemic: a prospective cohort study. CMAJ 2020;192(21):E566‒73. 链接1

相关研究