期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2022年 第13卷 第6期 doi: 10.1016/j.eng.2021.07.018

脊髓损伤治疗策略研究进展

a Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education & NMPA Key Laboratory for the Research and Evaluation of Tissue Engineering Technology Products, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
b NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou 310003, China
c Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Affiliated Hospital of Nantong University, Nantong University, Nantong 226001, China

收稿日期: 2021-03-12 修回日期: 2021-06-09 录用日期: 2021-07-25 发布日期: 2021-09-30

下一篇 上一篇

摘要

脊髓损伤(SCI)对个人的生活来说是一种灾难性的疾病。脊髓受损后会破坏脑-脊髓神经元环路,导致相关功能的缺失。SCI的发病过程是一个渐进的、复杂的过程。很多临床试验尝试促进SCI后神经再生和功能恢复,但效果并不理想。近年来,随着转录组测序和生物材料的发展,研究者一直在努力探索新型高效的SCI治疗方法。本文从损伤微环境、神经环路和生物材料支架等方面综述了近年来SCI修复的最新进展,并展望SCI治疗的未来发展方向,包括靶向-microRNA治疗、血管干预以及多种方法联合治疗策略。总之,本文旨在为该领域的研究提供新见解,并为SCI的治疗铺平道路。

图片

图1

图2

参考文献

[ 1 ] Lee BB, Cripps RA, Fitzharris M, Wing PC. The global map for traumatic spinal cord injury epidemiology: update 2011, global incidence rate. Spinal Cord 2014;52(2):110‒6. 链接1

[ 2 ] Thuret S, Moon LD, Gage FH. Therapeutic interventions after spinal cord injury. Nat Rev Neurosci 2006;7(8):628‒43. 链接1

[ 3 ] Ashammakhi N, Kim HJ, Ehsanipour A, Bierman RD, Kaarela O, Xue C, et al. Regenerative Therapies for Spinal Cord Injury. Tissue Eng Part B Rev 2019;25(6):471‒91. 链接1

[ 4 ] Oyinbo CA. Secondary injury mechanisms in traumatic spinal cord injury: a nugget of this multiply cascade. Acta Neurobiol Exp 2011;71(2):281‒99.

[ 5 ] Singh A, Tetreault L, Kalsi-Ryan S, Nouri A, Fehlings MG. Global prevalence and incidence of traumatic spinal cord injury. Clin Epidemiol 2014;6:309‒31. 链接1

[ 6 ] Cao HQ, Dong ED. An update on spinal cord injury research. Neurosci Bull 2013;29(1):94‒102. 链接1

[ 7 ] Desai J, Steiger S, Anders HJ. Molecular Pathophysiology of Gout. Trends Mol Med 2017;23(8):756‒68. 链接1

[ 8 ] Tran AP, Warren PM, Silver J. The Biology of Regeneration Failure and Success After Spinal Cord Injury. Physiol Rev 2018;98(2):881‒917. 链接1

[ 9 ] Silva NA, Sousa N, Reis RL, Salgado AJ. From basics to clinical: a comprehensive review on spinal cord injury. Prog Neurobiol 2014;114:25‒57. 链接1

[10] Ahuja CS, Nori S, Tetreault L, Wilson J, Kwon B, Harrop J, et al. Traumatic Spinal Cord Injury-Repair and Regeneration. Neurosurgery 2017;80(3s):S9-s22. 链接1

[11] Bradbury EJ, Burnside ER. Moving beyond the glial scar for spinal cord repair. Nat Commun 2019;10(1):3879. 链接1

[12] Venkatesh K, Ghosh SK, Mullick M, Manivasagam G, Sen D. Spinal cord injury: pathophysiology, treatment strategies, associated challenges, and future implications. Cell Tissue Res 2019;377(2):125‒51. 链接1

[13] Katoh H, Yokota K, Fehlings MG. Regeneration of Spinal Cord Connectivity Through Stem Cell Transplantation and Biomaterial Scaffolds. Front Cell Neurosci 2019;13. 链接1

[14] Higuchi A, Kumar SS, Benelli G, Ling QD, Li HF, Alarfaj AA, et al. Biomaterials used in stem cell therapy for spinal cord injury. Prog Mater Sci 2019;103:374‒424. 链接1

[15] Assinck P, Duncan GJ, Hilton BJ, Plemel JR, Tetzlaff W. Cell transplantation therapy for spinal cord injury. Nature Neurosci 2017;20(05):637‒47. 链接1

[16] Jones LL, Oudega M, Bunge MB, Tuszynski MH. Neurotrophic factors, cellular bridges and gene therapy for spinal cord injury. J Physiol 2001;533(Pt 1):83‒9. 链接1

[17] Kathleen K, Imran S, George S. Targeting Neurotrophins to Specific Populations of Neurons: NGF, BDNF, and NT-3 and Their Relevance for Treatment of Spinal Cord Injury. Int J Mol Sci 2017;18(3):548. 链接1

[18] Hodgetts SI, Harvey AR. Neurotrophic Factors Used to Treat Spinal Cord Injury. Vitam Horm 2017;104:405‒57. 链接1

[19] Boyce VS, Mendell LM. Neurotrophic factors in spinal cord injury. Handb Exp Pharmacol. 2014;220:443‒60. 链接1

[20] Schnell L, Schneider R, Kolbeck R, Barde YA, Schwab ME. Neurotrophin-3 enhances sprouting of corticospinal tract during development and after adult spinal cord lesion. Nature 1994;367(6459):170‒3. 链接1

[21] Zhou L, Baumgartner BJ, Hill-Felberg SJ, McGowen LR, Shine HD. Neurotrophin-3 expressed in situ induces axonal plasticity in the adult injured spinal cord. J Neurosci 2003;23(4):1424‒31. 链接1

[22] Petruska JC, Kitay B, Boyce VS, Kaspar BK, Pearse DD, Gage FH, et al. Intramuscular AAV delivery of NT-3 alters synaptic transmission to motoneurons in adult rats. Eur J Neurosci 2010;32(6):997‒1005. 链接1

[23] Ruitenberg MJ, Levison DB, Lee SV, Verhaagen J, Harvey AR, Plant GW. NT-3 expression from engineered olfactory ensheathing glia promotes spinal sparing and regeneration. Brain 2005;128(Pt 4):839‒53. 链接1

[24] Xu XM, Han Q. Neurotrophin-3-mediated locomotor recovery: a novel therapeutic strategy targeting lumbar neural circuitry after spinal cord injury. Neural Regen Res 2020;15(12):2241‒2. 链接1

[25] Li X, Yang Z, Zhang A. The effect of neurotrophin-3/chitosan carriers on the proliferation and differentiation of neural stem cells. Biomaterials 2009;30(28):4978‒85. 链接1

[26] Yang Z, Duan H, Mo L, Qiao H, Li X. The effect of the dosage of NT-3/chitosan carriers on the proliferation and differentiation of neural stem cells. Biomaterials 2010;31(18):4846‒54. 链接1

[27] Taylor SJ, Sakiyama-Elbert SE. Effect of controlled delivery of neurotrophin-3 from fibrin on spinal cord injury in a long term model. J Control Release 2006;116(2):204‒10. 链接1

[28] Willerth SM, Sakiyama-Elbert SE. Cell therapy for spinal cord regeneration. Adv Drug Deliv Rev 2008;60(2):263‒76. 链接1

[29] Gao L, Peng Y, Xu W, He P, Li T, Lu X, et al. Progress in Stem Cell Therapy for Spinal Cord Injury. Stem Cells Int 2020;2020:2853650. 链接1

[30] Huang L, Fu C, Xiong F, He C, Wei Q. Stem Cell Therapy for Spinal Cord Injury. Cell Transplant 2021;30:963689721989266. 链接1

[31] Fischer I, Dulin JN, Lane MA. Transplanting neural progenitor cells to restore connectivity after spinal cord injury. Nat Rev Neurosci 2020;21(7):366‒83. 链接1

[32] Ahuja CS, Mothe A, Khazaei M, Badhiwala JH, Gilbert EA, van der Kooy D, et al. The leading edge: Emerging neuroprotective and neuroregenerative cell-based therapies for spinal cord injury. Stem Cells Transl Med 2020;‍9(12):1509‒30. 链接1

[33] Zheng Y, Mao YR, Yuan TF, Xu DS, Cheng LM. Multimodal treatment for spinal cord injury: a sword of neuroregeneration upon neuromodulation. Neural Regen Res 2020;15(8):1437‒50. 链接1

[34] Chu T, Zhou H, Li F, Wang T, Lu L, Feng S. Astrocyte transplantation for spinal cord injury: current status and perspective. Brain Res Bull 2014;‍107:18‒30. 链接1

[35] David S, Aguayo AJ. Axonal elongation into peripheral nervous system “bridges” after central nervous system injury in adult rats. Science 1981;214(4523):931‒3. 链接1

[36] Alizadeh A, Dyck SM, Kataria H, Shahriary GM, Nguyen DH, Santhosh KT, et al. Neuregulin-1 positively modulates glial response and improves neurological recovery following traumatic spinal cord injury. Glia 2017;65(7):1152‒75. 链接1

[37] Orr MB, Gensel JC. Spinal Cord Injury Scarring and Inflammation: Therapies Targeting Glial and Inflammatory Responses. Neurotherapeutics 2018;15(3):541‒53. 链接1

[38] Nagoshi N, Khazaei M, Ahlfors JE, Ahuja CS, Nori S, Wang J, et al. Human Spinal Oligodendrogenic Neural Progenitor Cells Promote Functional Recovery After Spinal Cord Injury by Axonal Remyelination and Tissue Sparing. Stem Cells Transl Med 2018;7(11):806‒18. 链接1

[39] Lindsay SL, Toft A, Griffin J, A MME, Barnett SC, Riddell JS. Human olfactory mesenchymal stromal cell transplants promote remyelination and earlier improvement in gait co-ordination after spinal cord injury. Glia 2017;65(4):639‒56. 链接1

[40] Oudega M. Molecular and cellular mechanisms underlying the role of blood vessels in spinal cord injury and repair. Cell Tissue Res 2012;349(1):269‒88. 链接1

[41] Rust R, Kaiser J. Insights into the Dual Role of Inflammation after Spinal Cord Injury. J Neurosci 2017;37(18):4658‒60. 链接1

[42] Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 2008;5(7):621‒8. 链接1

[43] Shapiro E, Biezuner T, Linnarsson S. Single-cell sequencing-based technologies will revolutionize whole-organism science. Nat Rev Genet 2013;14(9):618‒30. 链接1

[44] Chen K, Deng S, Lu H, Zheng Y, Yang G, Kim D, et al. RNA-seq characterization of spinal cord injury transcriptome in acute/subacute phases: a resource for understanding the pathology at the systems level. PLoS ONE 2013;8(8):e72567. 链接1

[45] Duan H, Ge W, Zhang A, Xi Y, Chen Z, Luo D, et al. Transcriptome analyses reveal molecular mechanisms underlying functional recovery after spinal cord injury. Proc Natl Acad Sci USA 2015;112(43):13360‒5. 链接1

[46] Luo D, Ge W, Hu X, Li C, Lee CM, Zhou L, et al. Unbiased transcriptomic analyses reveal distinct effects of immune deficiency in CNS function with and without injury. Protein Cell 2019;10(8):566‒82. 链接1

[47] Yu B, Yao C, Wang Y, Mao S, Wang Y, Wu R, et al. The Landscape of Gene Expression and Molecular Regulation Following Spinal Cord Hemisection in Rats. Front Mol Neurosci 2019;12:287. 链接1

[48] So KF. A Comprehensive Study of Gene Expression and Molecular Regulation Following Spinal Cord Injury. Engineering 2020;6(4):389‒90. 链接1

[49] Yang P, Yang Z. Enhancing intrinsic growth capacity promotes adult CNS regeneration. J Neurol Sci 2012;312(1‒2):1‒6.

[50] Yang J, Zhao L, Yi S, Ding F, Yang Y, Liu Y, et al. Developmental Temporal Patterns and Molecular Network Features in the Transcriptome of Rat Spinal Cord. Engineering. . . 10.1016/j.eng.2021.10.001

[51] Feng W, Chen L, Nguyen PK, Wu SM, Li G. Single Cell Analysis of Endothelial Cells Identified Organ-Specific Molecular Signatures and Heart-Specific Cell Populations and Molecular Features. Front Cardiovasc Med 2019;6:165. 链接1

[52] Blum JA, Klemm S, Shadrach JL, Guttenplan KA, Nakayama L, Kathiria A, et al. Single-cell transcriptomic analysis of the adult mouse spinal cord reveals molecular diversity of autonomic and skeletal motor neurons. Nat Neurosci 2021;24(4):572‒83. 链接1

[53] Delile J, Rayon T, Melchionda M, Edwards A, Briscoe J, Sagner A. Single cell transcriptomics reveals spatial and temporal dynamics of gene expression in the developing mouse spinal cord. Development 2019;146(12):dev173807. 链接1

[54] Milich LM, Choi J, Ryan C, Yahn SL, Tsoulfas P, Lee JK. Single cell analysis of the cellular heterogeneity and interactions in the injured mouse spinal cord.bioRxiv2020. 链接1

[55] Dobrott CI, Sathyamurthy A, Levine AJ. Decoding Cell Type Diversity Within the Spinal Cord. Curr Opin Physiol 2019;8:1‒6. 链接1

[56] Rosenberg AB, Roco CM, Muscat RA, Kuchina A, Sample P, Yao Z, et al. Single-cell profiling of the developing mouse brain and spinal cord with split-pool barcoding. Science 2018;360(6385):176‒82. 链接1

[57] Li Y, He X, Kawaguchi R, Zhang Y, Wang Q, Monavarfeshani A, et al. Microglia-organized scar-free spinal cord repair in neonatal mice. Nature 2020;587(7835):613‒8. 链接1

[58] Kiehn O. Decoding the organization of spinal circuits that control locomotion. Nat Rev Neurosci 2016;17(4):224‒38. 链接1

[59] Han Q, Ordaz JD, Liu NK, Richardson Z, Wu W, Xia Y, et al. Descending motor circuitry required for NT-3 mediated locomotor recovery after spinal cord injury in mice. Nat Commun 2019;10(1):5815. 链接1

[60] Ahuja CS, Wilson JR, Nori S, Kotter MRN, Druschel C, Curt A, et al. Traumatic spinal cord injury. Nat Rev Dis Primers 2017;3:17018. 链接1

[61] Lemon RN. Descending pathways in motor control. Annu Rev Neurosci. 2008;31:195‒218. 链接1

[62] Wang X, Liu Y, Li X, Zhang Z, Yang H, Zhang Y, et al. Deconstruction of Corticospinal Circuits for Goal-Directed Motor Skills. Cell 2017;171(2):440‒55.e14. 链接1

[63] Chen M, Zheng B. Axon plasticity in the mammalian central nervous system after injury. Trends Neurosci 2014;37(10):583‒93. 链接1

[64] Maier IC, Schwab ME. Sprouting, regeneration and circuit formation in the injured spinal cord: factors and activity. Philos Trans R Soc Lond B Biol Sci 2006;361(1473):1611‒34. 链接1

[65] Liu Y, Wang X, Li W, Zhang Q, Li Y, Zhang Z, et al. A Sensitized IGF1 Treatment Restores Corticospinal Axon-Dependent Functions. Neuron 2017;95(4):817‒33.e4. 链接1

[66] Han Q, Xie Y, Ordaz JD, Huh AJ, Huang N, Wu W, et al. Restoring Cellular Energetics Promotes Axonal Regeneration and Functional Recovery after Spinal Cord Injury. Cell Metab 2020;31(3):623‒41.e8. 链接1

[67] Courtine G, Song B, Roy RR, Zhong H, Herrmann JE, Ao Y, et al. Recovery of supraspinal control of stepping via indirect propriospinal relay connections after spinal cord injury. Nat Med 2008;14(1):69‒74. 链接1

[68] Benthall KN, Hough RA, McClellan AD. Descending propriospinal neurons mediate restoration of locomotor function following spinal cord injury. J Neurophysiol 2017;117(1):215‒29. 链接1

[69] Bertuzzi M, Chang W, Ampatzis K. Adult spinal motoneurons change their neurotransmitter phenotype to control locomotion. Proc Natl Acad Sci USA 2018;115(42):E9926‒33. 链接1

[70] Wang Y, Wu W, Wu X, Sun Y, Zhang YP, Deng LX, et al. Remodeling of lumbar motor circuitry remote to a thoracic spinal cord injury promotes locomotor recovery. Elife 2018;7:e39016. 链接1

[71] Zholudeva LV, Qiang L, Marchenko V, Dougherty KJ, Sakiyama-Elbert SE, Lane MA. The Neuroplastic and Therapeutic Potential of Spinal Interneurons in the Injured Spinal Cord. Trends Neurosci 2018;41(9):625‒39. 链接1

[72] Zholudeva LV, Abraira VE, Satkunendrarajah K, McDevitt TC, Goulding MD, Magnuson DSK, et al. Spinal Interneurons as Gatekeepers to Neuroplasticity after Injury or Disease. J Neurosci 2021;41(5):845‒54. 链接1

[73] Chen B, Li Y, Yu B, Zhang Z, Brommer B, Williams PR, et al. Reactivation of Dormant Relay Pathways in Injured Spinal Cord by KCC2 Manipulations. Cell. 2018;174(3):521‒35.e13. 链接1

[74] Martino G, Pluchino S. The therapeutic potential of neural stem cells. Nat Rev Neurosci 2006;7(5):395‒406. 链接1

[75] Lu P, Wang Y, Graham L, McHale K, Gao M, Wu D, et al. Long-distance growth and connectivity of neural stem cells after severe spinal cord injury. Cell 2012;150(6):1264‒73. 链接1

[76] Kadoya K, Lu P, Nguyen K, Lee-Kubli C, Kumamaru H, Yao L, et al. Spinal cord reconstitution with homologous neural grafts enables robust corticospinal regeneration. Nat Med 2016;22(5):479‒87. 链接1

[77] Straley KS, Foo CW, Heilshorn SC. Biomaterial design strategies for the treatment of spinal cord injuries. J Neurotrauma 2010;27(1):1‒19. 链接1

[78] Haggerty AE, Maldonado-Lasunción I, Oudega M. Biomaterials for revascularization and immunomodulation after spinal cord injury. Biomed Mater 2018;13(4):044105. 链接1

[79] Li X, Liu D, Xiao Z, Zhao Y, Han S, Chen B, et al. Scaffold-facilitated locomotor improvement post complete spinal cord injury: Motor axon regeneration versus endogenous neuronal relay formation. Biomaterials 2019;197:20‒31. 链接1

[80] Yang Z, Zhang A, Duan H, Zhang S, Hao P, Ye K, et al. NT3-chitosan elicits robust endogenous neurogenesis to enable functional recovery after spinal cord injury. Proc Natl Acad Sci USA 2015;112(43):13354‒9. 链接1

[81] Rao JS, Zhao C, Zhang A, Duan H, Hao P, Wei RH, et al. NT3-chitosan enables de novo regeneration and functional recovery in monkeys after spinal cord injury. Proc Natl Acad Sci USA 2018;115(24):E5595‒604. 链接1

[82] Lin H, Chen B, Wang B, Zhao Y, Sun W, Dai J. Novel nerve guidance material prepared from bovine aponeurosis. J Biomed Mater Res A 2006;79(3):591‒8. 链接1

[83] Han S, Wang B, Jin W, Xiao Z, Li X, Ding W, et al. The linear-ordered collagen scaffold-BDNF complex significantly promotes functional recovery after completely transected spinal cord injury in canine. Biomaterials 2015;41:89‒96. 链接1

[84] Han Q, Sun W, Lin H, Zhao W, Gao Y, Zhao Y, et al. Linear ordered collagen scaffolds loaded with collagen-binding brain-derived neurotrophic factor improve the recovery of spinal cord injury in rats. Tissue Eng Part A 2009;15(10):2927‒35. 链接1

[85] Han Q, Jin W, Xiao Z, Ni H, Wang J, Kong J, et al. The promotion of neural regeneration in an extreme rat spinal cord injury model using a collagen scaffold containing a collagen binding neuroprotective protein and an EGFR neutralizing antibody. Biomaterials 2010;31(35):9212‒20. 链接1

[86] Li X, Fan C, Xiao Z, Zhao Y, Zhang H, Sun J, et al. A collagen microchannel scaffold carrying paclitaxel-liposomes induces neuronal differentiation of neural stem cells through Wnt/β-catenin signaling for spinal cord injury repair. Biomaterials 2018;183:114‒27. 链接1

[87] Zhao Y, Tang F, Xiao Z, Han G, Wang N, Yin N, et al. Clinical Study of NeuroRegen Scaffold Combined With Human Mesenchymal Stem Cells for the Repair of Chronic Complete Spinal Cord Injury. Cell Transplant 2017;‍26(5):891‒900. 链接1

[88] Lin XY, Lai BQ, Zeng X, Che MT, Ling EA, Wu W, et al. Cell Transplantation and Neuroengineering Approach for Spinal Cord Injury Treatment: A Summary of Current Laboratory Findings and Review of Literature. Cell Transplant 2016;25(8):1425‒38. 链接1

[89] Lai BQ, Che MT, Du BL, Zeng X, Ma YH, Feng B, et al. Transplantation of tissue engineering neural network and formation of neuronal relay into the transected rat spinal cord. Biomaterials 2016;109:40‒54. 链接1

[90] Lai BQ, Feng B, Che MT, Wang LJ, Cai S, Huang MY, et al. A Modular Assembly of Spinal Cord-Like Tissue Allows Targeted Tissue Repair in the Transected Spinal Cord. Adv Sci 2018;5(9):1800261. 链接1

[91] Sun P, Liu DZ, Jickling GC, Sharp FR, Yin KJ. MicroRNA-based therapeutics in central nervous system injuries. J Cereb Blood Flow Metab 2018;‍38(7):1125‒48. 链接1

[92] Ghibaudi M, Boido M, Vercelli A. Functional integration of complex miRNA networks in central and peripheral lesion and axonal regeneration. Prog Neurobiol 2017;158:69‒93. 链接1

[93] Yu B, Zhou S, Yi S, Gu X. The regulatory roles of non-coding RNAs in nerve injury and regeneration. Prog Neurobiol 2015;134:122‒39. 链接1

[94] Dong J, Lu M, He X, Xu J, Qin J, Cheng Z, et al. Identifying the role of microRNAs in spinal cord injury. Neurol Sci 2014;35(11):1663‒71. 链接1

[95] Shi Z, Zhou H, Lu L, Li X, Fu Z, Liu J, et al. The roles of microRNAs in spinal cord injury. Int J Neurosci 2017;127(12):1104‒15. 链接1

[96] Ujigo S, Kamei N, Hadoush H, Fujioka Y, Miyaki S, Nakasa T, et al. Administration of microRNA-210 promotes spinal cord regeneration in mice. Spine 2014;39(14):1099‒107. 链接1

[97] Li XQ, Lv HW, Wang ZL, Tan WF, Fang B, Ma H. MiR-27a ameliorates inflammatory damage to the blood-spinal cord barrier after spinal cord ischemia: reperfusion injury in rats by downregulating TICAM-2 of the TLR4 signaling pathway. J Neuroinflammation 2015;12(1):25. 链接1

[98] Hu J, Zeng L, Huang J, Wang G, Lu H. miR-126 promotes angiogenesis and attenuates inflammation after contusion spinal cord injury in rats. Brain Res 2015;1608:191‒202.

[99] Xu W, Li P, Qin K, Wang X, Jiang X. miR-124 regulates neural stem cells in the treatment of spinal cord injury. Neurosci Lett 2012;529(1):12‒7. 链接1

[100] Song JL, Zheng W, Chen W, Qian Y, Ouyang YM, Fan CY. Lentivirus-mediated microRNA-124 gene-modified bone marrow mesenchymal stem cell transplantation promotes the repair of spinal cord injury in rats. Exp Mol Med 2017;49(5):e332. 链接1

[101] Wang H, Moyano AL, Ma Z, Deng Y, Lin Y, Zhao C, et al. miR-219 Cooperates with miR-338 in Myelination and Promotes Myelin Repair in the CNS. Dev Cell 2017;40(6):566‒82.e5. 链接1

[102] Tang X, Sun C. The roles of MicroRNAs in neural regenerative medicine. Exp Neurol 2020;332:113394. 链接1

[103] Whetstone WD, Hsu JY, Eisenberg M, Werb Z, Noble-Haeusslein LJ. Blood-spinal cord barrier after spinal cord injury: relation to revascularization and wound healing. J Neurosci Res. 2003;74(2):227‒39. 链接1

[104] Figley SA, Khosravi R, Legasto JM, Tseng YF, Fehlings MG. Characterization of vascular disruption and blood-spinal cord barrier permeability following traumatic spinal cord injury. J Neurotrauma 2014;31(6):541‒52. 链接1

[105] Ng MT, Stammers AT, Kwon BK. Vascular disruption and the role of angiogenic proteins after spinal cord injury. Transl Stroke Res 2011;‍2(4):474‒91. 链接1

[106] Ni S, Luo Z, Jiang L, Guo Z, Li P, Xu X, et al. UTX/KDM6A Deletion Promotes Recovery of Spinal Cord Injury by Epigenetically Regulating Vascular Regeneration. Mol Ther 2019;27(12):2134‒46. 链接1

[107] Anderson MA, O´Shea TM, Burda JE, Ao Y, Barlatey SL, Bernstein AM, et al. Required growth facilitators propel axon regeneration across complete spinal cord injury. Nature 2018;561(7723):396‒400. 链接1

[108] Flynn JR, Graham BA, Galea MP, Callister RJ. The role of propriospinal interneurons in recovery from spinal cord injury. Neuropharmacology 2011;60(5):809‒22. 链接1

[109] Donnelly DJ, Popovich PG. Inflammation and its role in neuroprotection, axonal regeneration and functional recovery after spinal cord injury. Exp Neurol 2008;209(2):378‒88. 链接1

[110] Slomnicki LP, Myers SA, Saraswat Ohri S, Parsh MV, Andres KR, Chariker JH, et al. Improved locomotor recovery after contusive spinal cord injury in Bmal1-/- mice is associated with protection of the blood spinal cord barrier. Sci Rep 2020;10(1):14212. 链接1

[111] Rossignol S, Schwab M, Schwartz M, Fehlings MG. Spinal cord injury: time to move? J Neurosci 2007;27(44):11782‒92. 链接1

相关研究