期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2022年 第13卷 第6期 doi: 10.1016/j.eng.2021.07.023

光响应纳米材料在肿瘤治疗领域的应用

a School of Life Sciences, Tianjin University, Tianjin 300072, China
b Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology, Tianjin 300072, China

收稿日期: 2020-11-17 修回日期: 2021-06-19 录用日期: 2021-07-25 发布日期: 2021-11-16

下一篇 上一篇

摘要

由于其独特的优势,包括微创性和相对临床安全性,光疗被认为是一种有前途的癌症治疗方法。然而,光疗的治疗效果往往受到光穿透深度有限和光疗剂靶向作用低的限制。光响应纳米材料的出现为实现增强的光疗效力提供了一种可能的方法。本文综述了光响应纳米材料在癌症治疗中的生物医学应用进展,包括光热疗法(PTT)、光动力疗法(PDT)、光响应分子递送和光控联合疗法。还讨论了未来的前景。本文旨在论证光响应纳米材料在癌症治疗中的重要性,并为扩大光疗的应用提供策略。

图片

图1

图2

图3

图4

图5

图6

图7

图8

参考文献

[ 1 ] Xie Z, Fan T, An J, Choi W, Duo Y, Ge Y, et al. Emerging combination strategies with phototherapy in cancer nanomedicine. Chem Soc Rev 2020;49(22): 8065‒87. 链接1

[ 2 ] Shanmugam V, Selvakumar S, Yeh CS. Near-infrared light-responsive nanomaterials in cancer therapeutics. Chem Soc Rev 2014;43(17):6254‒87. 链接1

[ 3 ] Gøtzsche PC. Niels Finsen’s treatment for lupus vulgaris. J R Soc Med 2011;104(1):41‒2. 链接1

[ 4 ] Moller KI, Kongshoj B, Philipsen PA, Thomsen VO, Wulf HC. How Finsen’s light cured lupus vulgaris. Photodermatol Photoimmunol Photomed 2005;21(3): 118‒24. 链接1

[ 5 ] Rosenthal NE, Sack DA, Gillin JC, Lewy AJ, Goodwin FK, Davenport Y, et al. Seasonal affective disorder: a description of the syndrome and preliminary findings with light therapy. Arch Gen Psychiatry 1984;41(1):72‒80. 链接1

[ 6 ] Terman M, Terman JS, Quitkin FM, McGrath PJ, Stewart JW, Rafferty B. Light therapy for seasonal affective disorder. A review of efficacy. Neuropsychopharmacology 1989;2(1):1‒22. 链接1

[ 7 ] Perera S, Eisen R, Bhatt M, Bhatnagar N, de Souza R, Thabane L, et al. Light therapy for non-seasonal depression: systematic review and meta-analysis. BJPsych Open 2016;2(2):116‒26. 链接1

[ 8 ] Dodson ER, Zee PC. Therapeutics for circadian rhythm sleep disorders. Sleep Med Clin 2010;5(4):701‒15. 链接1

[ 9 ] Qiu M, Ren WX, Jeong T, Won M, Park GY, Sang DK, et al. Omnipotent phosphorene: a next-generation, two-dimensional nanoplatform for multidisciplinary biomedical applications. Chem Soc Rev 2018;47(15): 5588‒601. 链接1

[10] Lee GH, Moon H, Kim H, Lee GH, Kwon W, Yoo S, et al. Multifunctional materials for implantable and wearable photonic healthcare devices. Nat Rev Mater 2020;5(2):149‒65. 链接1

[11] Zhou Z, Song J, Nie L, Chen X. Reactive oxygen species generating systems meeting challenges of photodynamic cancer therapy. Chem Soc Rev 2016;45(23): 6597‒626. 链接1

[12] Ji C, Gao Q, Dong X, Yin W, Gu Z, Gan Z, et al. A size-reducible nanodrug with an aggregation-enhanced photodynamic effect for deep chemo- photodynamic therapy. Angew Chem Int Ed Engl 2018;57(35):11384‒8. 链接1

[13] Liu Y, Bhattarai P, Dai Z, Chen X. Photothermal therapy and photoacoustic imaging via nanotheranostics in fighting cancer. Chem Soc Rev 2019;48(7): 2053‒108. 链接1

[14] Chen J, Fan T, Xie Z, Zeng Q, Xue P, Zheng T, et al. Advances in nanomaterials for photodynamic therapy applications: status and challenges. Biomaterials 2020;237:119827. 链接1

[15] Maeda H, Nakamura H, Fang J. The EPR effect for macromolecular drug delivery to solid tumors: improvement of tumor uptake, lowering of systemic toxicity, and distinct tumor imaging in vivo. Adv Drug Deliv Rev 2013;65(1): 71‒9. 链接1

[16] Torchilin V. Tumor delivery of macromolecular drugs based on the EPR effect. Adv Drug Deliv Rev 2011;63(3):131‒5. 链接1

[17] Dai Y, Xu C, Sun X, Chen X. Nanoparticle design strategies for enhanced anticancer therapy by exploiting the tumour microenvironment. Chem Soc Rev 2017;46(12):3830‒52. 链接1

[18] Rai P, Mallidi S, Zheng X, Rahmanzadeh R, Mir Y, Elrington S, et al. Development and applications of photo-triggered theranostic agents. Adv Drug Deliv Rev 2010;62(11):1094‒124. 链接1

[19] Deng S, Li X, Liu S, Chen J, Li M, Chew SY, et al. Codelivery of CRISPR-Cas9 and chlorin e6 for spatially controlled tumor-specific gene editing with synergistic drug effects. Sci Adv 2020;6(29):eabb4005. 链接1

[20] Nakielski P, Pawłowska S, Rinoldi C, Ziai Y, De Sio L, Urbanek O, et al. Multifunctional platform based on electrospun nanofibers and plasmonic hydrogel: a smart nanostructured pillow for near-infrared light-driven biomedical applications. ACS Appl Mater Interfaces 2020;12(49):54328‒42. 链接1

[21] Chen S, Weitemier AZ, Zeng X, He L, Wang X, Tao Y, et al. Near-infrared deep brain stimulation via upconversion nanoparticle-mediated optogenetics. Science 2018;359(6376):679‒84. 链接1

[22] Zheng B, Bai Y, Chen H, Pan H, Ji W, Gong X, et al. Near-infrared light-excited upconverting persistent nanophosphors in vivo for imaging-guided cell therapy. ACS Appl Mater Interfaces 2018;10(23):19514‒22. 链接1

[23] Wan Y, Lu G, Zhang J, Wang Z, Li X, Chen R, et al. A biocompatible free radical nanogenerator with real-time monitoring capability for high performance sequential hypoxic tumor therapy. Adv Funct Mater 2019;29(39):1903436. 链接1

[24] Zhou F, Wang M, Luo T, Qu J, Chen WR. Photo-activated chemo-immunotherapy for metastatic cancer using a synergistic graphene nanosystem. Biomaterials 2021;265:120421. 链接1

[25] Hu K, Xie L, Zhang Y, Hanyu M, Yang Z, Nagatsu K, et al. Marriage of black phosphorus and Cu2+ as effective photothermal agents for PET-guided combination cancer therapy. Nat Commun 2020;11(1):2778. 链接1

[26] Lin H, Gao S, Dai C, Chen Yu, Shi J. A two-dimensional biodegradable niobium carbide (MXene) for photothermal tumor eradication in NIR-I and NIR-II biowindows. J Am Chem Soc 2017;139(45):16235‒47. 链接1

[27] Guglielmelli A, Rosa P, Contardi M, Prato M, Mangino G, Miglietta S, et al. Biomimetic keratin gold nanoparticle-mediated in vitro photothermal therapy on glioblastoma multiforme. Nanomedicine 2021;16(2):121‒38. 链接1

[28] Yang W, Guo W, Le W, Lv G, Zhang F, Shi L, et al. Albumin-bioinspired Gd:CuS nanotheranostic agent for in vivo photoacoustic/magnetic resonance imaging- guided tumor-targeted photothermal therapy. ACS Nano 2016;10(11): 10245‒57. 链接1

[29] Li J, Xie C, Huang J, Jiang Y, Miao Q, Pu K. Semiconducting polymer nanoenzymes with photothermic activity for enhanced cancer therapy. Angew Chem Int Ed Engl 2018;57(15):3995‒8. 链接1

[30] Zhang L, Wang S, Zhou Y, Wang C, Zhang XZ, Deng H. Covalent organic frameworks as favorable constructs for photodynamic therapy. Angew Chem Int Ed Engl 2019;58(40):14213‒8. 链接1

[31] Han R, Zhao M, Wang Z, Liu H, Zhu S, Huang L, et al. Super-efficient in vivo two-photon photodynamic therapy with a gold nanocluster as a type I photosensitizer. ACS Nano 2020;14(8):9532‒44. 链接1

[32] Luo T, Ni K, Culbert A, Lan G, Li Z, Jiang X, et al. Nanoscale metal–organic frameworks stabilize bacteriochlorins for type I and type II photodynamic therapy. J Am Chem Soc 2020;142(16):7334‒9. 链接1

[33] Xu W, Lee MMS, Nie JJ, Zhang Z, Kwok RTK, Lam JWY, et al. Three-pronged attack by homologous far-red/NIR AIEgens to achieve 1 + 1 + 1 > 3 synergistic enhanced photodynamic therapy. Angew Chem Int Ed Engl 2020;59(24): 9610‒6. 链接1

[34] Yang Y, Wang L, Cao H, Li Q, Li Y, Han M, et al. Photodynamic therapy with liposomes encapsulating photosensitizers with aggregation-induced emission. Nano Lett 2019;19(3):1821‒6. 链接1

[35] Zheng B, Su L, Pan H, Hou B, Zhang Y, Zhou F, et al. NIR-remote selected activation gene expression in living cells by upconverting microrods. Adv Mater 2016;28(4):707‒14. 链接1

[36] Tang L, Yang Z, Zhou Z, Ma Y, Kiesewetter DO, Wang Z, et al. A logic-gated modular nanovesicle enables programmable drug release for on-demand chemotherapy. Theranostics 2019;9(5):1358‒68. 链接1

[37] Lin LS, Yang X, Zhou Z, Yang Z, Jacobson O, Liu Y, et al. Yolk‒shell nanostructure: an ideal architecture to achieve harmonious integration of magnetic‒plasmonic hybrid theranostic platform. Adv Mater 2017;29(21): 1606681. 链接1

[38] Kolemen S, Ozdemir T, Lee D, Kim GM, Karatas T, Yoon J, et al. Remote-controlled release of singlet oxygen by the plasmonic heating of endoperoxide-modified gold nanorods: towards a paradigm change in photodynamic therapy. Angew Chem Int Ed Engl 2016;55(11):3606‒10. 链接1

[39] Wang P, Zhang L, Zheng W, Cong L, Guo Z, Xie Y, et al. Thermo-triggered release of CRISPR-Cas9 system by lipid-encapsulated gold nanoparticles for tumor therapy. Angew Chem Int Ed Engl 2018;57(6):1491‒6. 链接1

[40] Pei P, Sun C, Tao W, Li J, Yang X, Wang J. ROS-sensitive thioketal-linked polyphosphoester-doxorubicin conjugate for precise phototriggered locoregional chemotherapy. Biomaterials 2019;188:74‒82. 链接1

[41] Chen J, Liu L, Motevalli SM, Wu X, Yang XH, Li X, et al. Light-triggered retention and cascaded therapy of albumin-based theranostic nanomedicines to alleviate tumor adaptive treatment tolerance. Adv Funct Mater 2018;28(17): 1707291. 链接1

[42] Fei Z, Fan Q, Dai H, Zhou X, Xu J, Ma Q, et al. Physiologically triggered injectable red blood cell-based gel for tumor photoablation and enhanced cancer immunotherapy. Biomaterials 2021;271:120724. 链接1

[43] Lv G, Guo W, Zhang W, Zhang T, Li S, Chen S, et al. Near-infrared emission CuInS/ZnS quantum dots: all-in-one theranostic nanomedicines with intrinsic fluorescence/photoacoustic imaging for tumor phototherapy. ACS Nano 2016;10(10):9637‒45. 链接1

[44] Liu H, Lv X, Qian J, Li H, Qian Y, Wang X, et al. Graphitic carbon nitride quantum dots embedded in carbon nanosheets for near-infrared imaging-guided combined photo-chemotherapy. ACS Nano 2020;14(10): 13304‒15. 链接1

[45] Liu Y, Shu G, Li X, Chen H, Zhang B, Pan H, et al. Human HSP70 promoter-based prussian blue nanotheranostics for thermo-controlled gene therapy and synergistic photothermal ablation. Adv Funct Mater 2018;28(32): 1802026. 链接1

[46] Chu B, Qu Y, He X, Hao Y, Yang C, Yang Y, et al. ROS-responsive camptothecin prodrug nanoparticles for on-demand drug release and combination of chemotherapy and photodynamic therapy. Adv Funct Mater 2020;30(52): 2005918. 链接1

[47] Wan X, Zhong H, Pan W, Li Y, Chen Y, Li N, et al. Programmed release of dihydroartemisinin for synergistic cancer therapy using CaCO3 mineralized metal‒organic framework. Angew Chem Int Ed Engl 2019;58(40):14134‒9. 链接1

[48] Li X, Lovell JF, Yoon J, Chen X. Clinical development and potential of photothermal and photodynamic therapies for cancer. Nat Rev Clin Oncol 2020;17(11):657‒74. 链接1

[49] Jung HS, Verwilst P, Sharma A, Shin J, Sessler JL, Kim JS. Organic molecule-based photothermal agents: an expanding photothermal therapy universe. Chem Soc Rev 2018;47(7):2280‒97. 链接1

[50] Gai S, Yang G, Yang P, He F, Lin J, Jin D, et al. Recent advances in functional nanomaterials for light-triggered cancer therapy. Nano Today 2018;19:146‒87. 链接1

[51] Wang S, Tian R, Zhang Xu, Cheng G, Yu P, Chang J, et al. Beyond photo: Xdynamic therapies in fighting cancer. Adv Mater 2021;33(25):2007488. 链接1

[52] Durantini AM, Greene LE, Lincoln R, Martínez SR, Cosa G. Reactive oxygen species mediated activation of a dormant singlet oxygen photosensitizer: from autocatalytic singlet oxygen amplification to chemicontrolled photodynamic therapy. J Am Chem Soc 2016;138(4):1215‒25. 链接1

[53] Ju E, Dong K, Chen Z, Liu Z, Liu C, Huang Y, et al. Copper(II)-graphitic carbon nitride triggered synergy: improved ROS generation and reduced glutathione levels for enhanced photodynamic therapy. Angew Chem Int Ed Engl 2016;55(38): 11467‒71. 链接1

[54] Ferris DP, Zhao YL, Khashab NM, Khatib HA, Stoddart JF, Zink JI. Light-operated mechanized nanoparticles. J Am Chem Soc 2009;131(5):1686‒8. 链接1

[55] Zhang X, Wang S, Cheng G, Yu P, Chang J, Chen X. Cascade drug-release strategy for enhanced anticancer therapy. Matter 2021;4(1):26‒53. 链接1

[56] Cheng G, Zong W, Guo H, Li F, Zhang X, Yu P, et al. Programmed size-changeable nanotheranostic agents for enhanced imaging-guided chemo/ photodynamic combinationtherapy andfast elimination. Adv Mater 2021;33(21): 2100398. 链接1

[57] Cheng L, Wang C, Feng L, Yang K, Liu Z. Functional nanomaterials for phototherapies of cancer. Chem Rev 2014;114(21):10869‒939. 链接1

[58] Xing R, Liu K, Jiao T, Zhang N, Ma K, Zhang R, et al. An injectable self-assembling collagen‒gold hybrid hydrogel for combinatorial antitumor photothermal/photodynamic therapy. Adv Mater 2016;28(19):3669‒76. 链接1

[59] Li W, Yang J, Luo L, Jiang M, Qin B, Yin H, et al. Targeting photodynamic and photothermal therapy to the endoplasmic reticulum enhances immunogenic cancer cell death. Nat Commun 2019;10(1):3349. 链接1

[60] Renard D, Tian S, Lou M, Neumann O, Yang J, Bayles A, et al. UV-resonant al nanocrystals: synthesis, silica coating, and broadband photothermal response. Nano Lett 2021;21(1):536‒42. 链接1

[61] Ali MRK, Farghali HAM, Wu Y, El-Sayed I, Osman AH, Selim SA, et al. Gold nanorod-assisted photothermal therapy decreases bleeding during breast cancer surgery in dogs and cats. Cancers 2019;11(6):851. 链接1

[62] Wu Y, Ali MRK, Dong B, Han T, Chen K, Chen J, et al. Gold nanorod photothermal therapy alters cell junctions and actin network in inhibiting cancer cell collective migration. ACS Nano 2018;12(9):9279‒90. 链接1

[63] Yang T, Wang Y, Ke H, Wang Q, Lv X, Wu H, et al. Protein-nanoreactor-assisted synthesis of semiconductor nanocrystals for efficient cancer theranostics. Adv Mater 2016;28(28):5923‒30. 链接1

[64] Zhou M, Zhang R, Huang M, Lu W, Song S, Melancon MP, et al. A chelator-free multifunctional [64Cu]CuS nanoparticle platform for simultaneous micro-PET/ CT imaging and photothermal ablation therapy. J Am Chem Soc 2010;132(43): 15351‒8. 链接1

[65] Tian Q, Hu J, Zhu Y, Zou R, Chen Z, Yang S, et al. Sub-10 nm Fe3O4@Cu2–xS core-shell nanoparticles for dual-modal imaging and photothermal therapy. J Am Chem Soc 2013;135(23):8571‒7. 链接1

[66] Dickerson MB, Sandhage KH, Naik RR. Protein- and peptide-directed syntheses of inorganic materials. Chem Rev 2008;108(11):4935‒78. 链接1

[67] Sheng D, Liu T, Deng L, Zhang L, Li X, Xu J, et al. Perfluorooctyl bromide & indocyanine green co-loaded nanoliposomes for enhanced multimodal imaging-guided phototherapy. Biomaterials 2018;165:1‒13. 链接1

[68] Chen WR, Adams RL, Carubelli R, Nordquist RE. Laser-photosensitizer assisted immunotherapy: a novel modality for cancer treatment. Cancer Lett 1997;115(1):25‒30. 链接1

[69] Zhou H, Fan Z, Deng J, Lemons PK, Arhontoulis DC, Bowne WB, et al. Hyaluronidase embedded in nanocarrier peg shell for enhanced tumor penetration and highly efficient antitumor efficacy. Nano Lett 2016;16(5): 3268‒77. 链接1

[70] Rastinehad AR, Anastos H, Wajswol E, Winoker JS, Sfakianos JP, Doppalapudi SK, et al. Gold nanoshell-localized photothermal ablation of prostate tumors in a clinical pilot device study. Proc Natl Acad Sci USA 2019;116(37): 18590‒6. 链接1

[71] Xu Z, Zhang Y, Zhou W, Wang L, Xu G, Ma M, et al. NIR-II-activated biocompatible hollow nanocarbons for cancer photothermal therapy. J Nanobiotechnology 2021;19(1):137. 链接1

[72] Idris NM, Gnanasammandhan MK, Zhang J, Ho PC, Mahendran R, Zhang Y. In vivo photodynamic therapy using upconversion nanoparticles as remote- controlled nanotransducers. Nat Med 2012;18(10):1580‒5. 链接1

[73] Li X, Zheng BD, Peng XH, Li SZ, Ying JW, Zhao Y, et al. Phthalocyanines as medicinal photosensitizers: developments in the last five years. Coord Chem Rev 2019;379:147‒60. 链接1

[74] Ethirajan M, Chen Y, Joshi P, Pandey RK. The role of porphyrin chemistry in tumor imaging and photodynamic therapy. Chem Soc Rev 2011;40(1): 340‒62. 链接1

[75] Qian C, Yu J, Chen Y, Hu Q, Xiao X, Sun W, et al. Light-activated hypoxia-responsive nanocarriers for enhanced anticancer therapy. Adv Mater 2016;28(17): 3313‒20. 链接1

[76] Dougherty TJ, Gomer CJ, Henderson BW, Jori G, Kessel D, Korbelik M, et al. Photodynamic therapy. J Natl Cancer Inst 1998;90(12):889‒905. 链接1

[77] Dolmans DE, Fukumura D, Jain RK. Photodynamic therapy for cancer. Nat Rev Cancer 2003;3(5):380‒7. 链接1

[78] Li X, Kwon N, Guo T, Liu Z, Yoon J. Innovative strategies for hypoxic-tumor photodynamic therapy. Angew Chem Int Ed Engl 2018;57(36):11522‒31. 链接1

[79] Lovell JF, Liu TWB, Chen J, Zheng G. Activatable photosensitizers for imaging and therapy. Chem Rev 2010;110(5):2839‒57. 链接1

[80] Hou Z, Deng K, Wang M, Liu Y, Chang M, Huang S, et al. Hydrogenated titanium oxide decorated upconversion nanoparticles: facile laser modified synthesis and 808 nm near-infrared light triggered phototherapy. Chem Mater 2019;31(3):774‒84. 链接1

[81] Zhang D, Wen L, Huang R, Wang H, Hu X, Xing D. Mitochondrial specific photodynamic therapy by rare-earth nanoparticles mediated near-infrared graphene quantum dots. Biomaterials 2018;153:14‒26. 链接1

[82] Silva EF, Serpa C, Da˛ browski J, Monteiro CJP, Formosinho SJ, Stochel G, et al. Mechanisms of singlet-oxygen and superoxide-ion generation by porphyrins and bacteriochlorins and their implications in photodynamic therapy. Chemistry 2010;16(30):9273‒86. 链接1

[83] Li X, Lee D, Huang JD, Yoon J. Phthalocyanine-assembled nanodots as photosensitizers for highly efficient type I photoreactions in photodynamic therapy. Angew Chem Int Ed Engl 2018;57(31):9885‒90. 链接1

[84] Londoño-Larrea P, Vanegas JP, Cuaran-Acosta D, Zaballos-García E, Pérez-Prieto J. Water-soluble naked gold nanoclusters are not luminescent. Chemistry 2017;23(34):8137‒41. 链接1

[85] Lan G, Ni K, Veroneau SS, Feng X, Nash GT, Luo T, et al. Titanium-based nanoscale metal–organic framework for type I photodynamic therapy. J Am Chem Soc 2019;141(10):4204‒8. 链接1

[86] Chen YH, Li GL, Pandey RK. Synthesis of bacteriochlorins and their potential utility in photodynamic therapy (PDT). Curr Org Chem 2004;8(12):1105‒34. 链接1

[87] Huang YY, Balasubramanian T, Yang E, Luo D, Diers JR, Bocian DF, et al. Stable synthetic bacteriochlorins for photodynamic therapy: role of dicyano peripheral groups, central metal substitution (2H, Zn, Pd), and cremophor EL delivery. ChemMedChem 2012;7(12):2155‒67. 链接1

[88] Pandey RK, Constantine S, Tsuchida T, Zheng G, Medforth CJ, Aoudia M, et al. Synthesis, photophysical properties, in vivo photosensitizing efficacy, and human serum albumin binding properties of some novel bacteriochlorins. J Med Chem 1997;40(17):2770‒9. 链接1

[89] Feng G, Liu B. Aggregation-induced emission (AIE) dots: emerging theranostic nanolights. Acc Chem Res 2018;51(6):1404‒14. 链接1

[90] Cheng G, Wang H, Zhang C, Hao Y, Wang T, Zhang Y, et al. Multifunctional nano-photosensitizer: a carrier-free aggregation-induced emission nanoparticle with efficient photosensitization and pH-responsibility. Chem Eng J 2020;390:124447. 链接1

[91] Yu G, Cen TY, He Z, Wang SP, Wang Z, Ying XW, et al. Porphyrin nanocage-embedded single-molecular nanoparticles for cancer nanotheranostics. Angew Chem Int Ed Engl 2019;58(26):8799‒803. 链接1

[92] Luo J, Xie Z, Lam JWY, Cheng L, Tang BZ, Chen H, et al. Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole. Chem Commun 2001(18): 1740‒1. 链接1

[93] Würthner F. Aggregation-induced emission (AIE): a historical perspective. Angew Chem Int Ed Engl 2020;59(34):14192‒6. 链接1

[94] Wu MX, Yang YW. Metal‒organic framework (MOF)-based drug/cargo delivery and cancer therapy. Adv Mater 2017;29(23):1606134. 链接1

[95] Rosenblum D, Joshi N, Tao W, Karp JM, Peer D. Progress and challenges towards targeted delivery of cancer therapeutics. Nat Commun 2018;9(1): 1410. 链接1

[96] Zhao L, Liu Y, Chang R, Xing R, Yan X. Supramolecular photothermal nanomaterials as an emerging paradigm toward precision cancer therapy. Adv Funct Mater 2019;29(4):1806877. 链接1

[97] Nam J, Son S, Park KS, Zou W, Shea LD, Moon JJ. Cancer nanomedicine for combination cancer immunotherapy. Nat Rev Mater 2019;4(6):398‒414. 链接1

[98] Fan J, Zhang Z, Wang Y, Lin S, Yang S. Photo-responsive degradable hollow mesoporous organosilica nanoplatforms for drug delivery. J Nanobiotechnology 2020;18(1):91. 链接1

[99] Raza A, Hayat U, Rasheed T, Bilal M, Iqbal HMN. “Smart” materials-based near-infrared light-responsive drug delivery systems for cancer treatment: a review. J Mater Res Technol 2019;8(1):1497‒509. 链接1

[100] Phua SZF, Xue C, Lim WQ, Yang G, Chen H, Zhang Y, et al. Light-responsive prodrug-based supramolecular nanosystems for site-specific combination therapy of cancer. Chem Mater 2019;31(9):3349‒58. 链接1

[101] Liu J, Yu M, Ning X, Zhou C, Yang S, Zheng J. PEGylation and zwitterionization: pros and cons in the renal clearance and tumor targeting of near-IR-emitting gold nanoparticles. Angew Chem Int Ed Engl 2013;52(48):12572‒6. 链接1

[102] Yu N, Huang L, Zhou Y, Xue T, Chen Z, Han G. Near-infrared-light activatable nanoparticles for deep-tissue-penetrating wireless optogenetics. Adv Healthc Mater 2019;8(6):1801132. 链接1

[103] Wang Z, Thang DC, Han Q, Zhao X, Xie X, Wang Z, et al. Near-infrared photocontrolled therapeutic release via upconversion nanocomposites. J Control Release 2020;324:104‒23. 链接1

[104] Zhao W, Zhao Y, Wang Q, Liu T, Sun J, Zhang R. Remote light-responsive nanocarriers for controlled drug delivery: advances and perspectives. Small 2019;15(45):1903060. 链接1

[105] Liu J, Bu W, Pan L, Shi J. NIR-triggered anticancer drug delivery by upconverting nanoparticles with integrated azobenzene-modified mesoporous silica. Angew Chem Int Ed Engl 2013;52(16):4375‒9. 链接1

[106] Cheng L, Wang C, Liu Z. Upconversion nanoparticles and their composite nanostructures for biomedical imaging and cancer therapy. Nanoscale 2013;5(1):23‒37. 链接1

[107] Wen S, Zhou J, Zheng K, Bednarkiewicz A, Liu X, Jin D. Advances in highly doped upconversion nanoparticles. Nat Commun 2018;9(1):2415. 链接1

[108] Zheng B, Wang H, Pan H, Liang C, Ji W, Zhao L, et al. Near-infrared light triggered upconversion optogenetic nanosystem for cancer therapy. ACS Nano 2017;11(12):11898‒907. 链接1

[109] Li S, Zhang W, Xue H, Xing R, Yan X. Tumor microenvironment-oriented adaptive nanodrugs based on peptide self-assembly. Chem Sci 2020;11(33): 8644‒56. 链接1

[110] Niu X, Liu Y, Li X, Wang W, Yuan Z. NIR light-driven Bi2Se3-based nanoreactor with ‘‘three in one” hemin-assisted cascade catalysis for synergetic cancer therapy. Adv Funct Mater 2020;30(52):2006883. 链接1

[111] Wang M, Rao J, Wang M, Li X, Liu K, Naylor MF, et al. Cancer photo-immunotherapy: from bench to bedside. Theranostics 2021;11(5): 2218‒31. 链接1

[112] Panwar N, Soehartono AM, Chan KK, Zeng S, Xu G, Qu J, et al. Nanocarbons for biology and medicine: sensing, imaging, and drug delivery. Chem Rev 2019;119(16):9559‒656. 链接1

[113] Guo W, Sun X, Jacobson O, Yan X, Min K, Srivatsan A, et al. Intrinsically radioactive [64Cu]CuInS/ZnS quantum dots for PET and optical imaging: improved radiochemical stability and controllable Cerenkov luminescence. ACS Nano 2015;9(1):488‒95. 链接1

[114] Lin L, Wang S, Deng H, Yang W, Rao L, Tian R, et al. Endogenous labile iron pool-mediated free radical generation for cancer chemodynamic therapy. J Am Chem Soc 2020;142(36):15320‒30. 链接1

[115] Wang S, Yu G, Wang Z, Jacobson O, Lin LS, Yang W, et al. Enhanced antitumor efficacy by a cascade of reactive oxygen species generation and drug release. Angew Chem Int Ed Engl 2019;58(41):14758‒63. 链接1

[116] Wang S, Wang Z, Yu G, Zhou Z, Jacobson O, Liu Y, et al. Tumor-specific drug release and reactive oxygen species generation for cancer chemo/ chemodynamic combination therapy. Adv Sci 2019;6(5):1801986. 链接1

[117] Lin LS, Huang T, Song J, Ou XY, Wang Z, Deng H, et al. Synthesis of copper peroxide nanodots for H2O2 self-supplying chemodynamic therapy. J Am Chem Soc 2019;141(25):9937‒45. 链接1

[118] Lee Y, Kim DH. Wireless metronomic photodynamic therapy. Nat Biomed Eng 2019;3(1):5‒6. 链接1

[119] Liu Y, Zhen W, Wang Y, Liu J, Jin L, Zhang T, et al. One-dimensional Fe2P acts as a fenton agent in response to NIR II light and ultrasound for deep tumor synergetic theranostics. Angew Chem Int Ed Engl 2019;58 (8):2407‒12. 链接1

[120] Feng W, Han X, Wang R, Gao X, Hu P, Yue W, et al. Nanocatalysts-augmented and photothermal-enhanced tumor-specific sequential nanocatalytic therapy in both NIR-I and NIR-II biowindows. Adv Mater 2019;31(5):1805919.

[121] Deng Z, Liu S. Controlled drug delivery with nanoassemblies of redox-responsive prodrug and polyprodrug amphiphiles. J Control Release 2020;326:276‒96. 链接1

相关研究