期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2022年 第13卷 第6期 doi: 10.1016/j.eng.2021.07.025

新型矩形动态膜气升式生物反应器的传质、气含率及分批和连续发酵动力学模型

a College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
b Jiangsu Jicui Industrial Biotechnology Research Institute Co., Ltd., Nanjing 210000, China

# These authors contributed equally to this work.

收稿日期: 2021-02-02 修回日期: 2021-06-26 录用日期: 2021-07-25 发布日期: 2021-12-10

下一篇 上一篇

摘要

相较于形成大气泡的传统圆柱形气升式生物反应器(CCAB),我们实验室开发了新型矩形动态膜气升式生物反应器(RDMAB)通过产生微小气泡增强体积氧传质系数(kLa)和气含率,进而改善生物反应过程。此次研究,我们比较了CCAB和RDMAB的传质、气含率以及发酵合成RNA的分批和连续过程,并建立微生物生长、底物利用和RNA合成的非结构化动力学模型。分批发酵过程,RDMAB的生物量、RNA产量和底物利用率均高于CCAB,表明动态膜曝气微小气泡形成高的kLa,更利于好氧发酵。RDMAB的连续发酵起始时间比CCAB提前20 h,显著改善了生物过程。连续发酵过程,维持相同的溶解氧水平和恒定的稀释率,RDMAB的生物量和RNA浓度分别比CCAB高9.71%和11.15%。保持相同通气量,连续发酵RDMAB的稀释率比CCAB高16.7%。总之,RDMAB更适合于连续发酵过程,开发气升式生物反应器的新型曝气和几何结构以提高kLa和气含率,对强化生物反应过程变得越来越重要。

图片

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6

Fig. 7

Fig. 8

Fig. 9

Fig. 10

参考文献

[ 1 ] Zhang T, We CH, Ren Y, Feng CH, Wu HZ. Advances in airlift reactors: modified design and optimization of operation conditions. Rev Chem Eng 2017;33 (2):163–82. 链接1

[ 2 ] Särkelä R, Eerikäinen T, Pitkänen JP, Bankar S. Mixing efficiency studies in an airlift bioreactor with helical flow promoters for improved reactor performance. Chem Eng Process 2019;137:80–6. 链接1

[ 3 ] Yang T, Geng S, Yang C, Huang Q. Hydrodynamics and mass transfer in an internal airlift slurry reactor for process intensification. Chem Eng Sci 2018;184:126–33. 链接1

[ 4 ] Yen HW, Chang JT, Chang JS. The growth of oleaginous Rhodotorula glutinis in an internal-loop airlift bioreactor by using mixture substrates of rice straw hydrolysate and crude glycerol. Biomass Bioenergy 2015;80:38–43. 链接1

[ 5 ] Lin J, Han M, Wang T, Zhang T, Wang J, Jin Y. Influence of the gas distributor on the local hydrodynamic behavior of an external loop airlift reactor. Chem Eng J 2004;102(1):51–9. 链接1

[ 6 ] Chen Z, Min H, Hu D, Wang H, Zhao Y, Cui Y, et al. Performance of a novel multiple draft tubes airlift loop membrane bioreactor to treat ampicillin pharmaceutical wastewater under different temperatures. Chem Eng J 2020;380:122521. 链接1

[ 7 ] Medina-Moreno SA, Conde-Báez L, Jiménez-González A, Aguilar-López R, Rodríguez-Vázquez R, Tec-Caamal EN. Modelling hexadecane uptake strategies of a rhizospheric bacterial consortium under different hydrodynamic draft-tube airlift reactor conditions. Biochem Eng J 2020;160:107611. 链接1

[ 8 ] Manowattana A, Techapun C, Watanabe M, Chaiyaso T. Bioconversion of biodiesel-derived crude glycerol into lipids and carotenoids by an oleaginous red yeast Sporidiobolus pararoseus KM281507 in an airlift bioreactor. J Biosci Bioeng 2018;125(1):59–66. 链接1

[ 9 ] Li G, Li H, Wei G, He X, Xu S, Chen K, et al. Hydrodynamics, mass transfer and cell growth characteristics in a novel microbubble stirred bioreactor employing sintered porous metal plate impeller as gas sparger. Chem Eng Sci 2018;192:665–77. 链接1

[10] Imrat, Labala RK, Velhal S, Bhagat S, Patel V, Jeyaram K. Small double-stranded RNA with anti-HIV activity abundantly produced by Bacillus subtilis MTCC5480 isolated from fermented soybean. Int J Biol Macromol 2020;161:828–35. 链接1

[11] Bosco F, Casale A, Gribaudo G, Mollea C, Malucelli G. Nucleic acids from agroindustrial wastes: a green recovery method for fire retardant applications. Ind Crops Prod 2017;108:208–18. 链接1

[12] Tam TH, Chan KL, Boroumand P, Liu Z, Brozinick JT, Bui HH, et al. Nucleotides released from palmitate-activated murine macrophages attract neutrophils. J Biol Chem 2020;295(15):4902–11. 链接1

[13] Xu M, Liang R, Guo Q, Wang S, Zhao M, Zhang Z, et al. Dietary nucleotides extend the life span in Sprague-Dawley rats. J Nutr Health Aging 2013;17 (3):223–9. 链接1

[14] Singhal A, Macfarlane G, Macfarlane S, Lanigan J, Kennedy K, Elias-Jones A, et al. Dietary nucleotides and fecal microbiota in formula-fed infants: a randomized controlled trial. Am J Clin Nutr 2008;87(6):1785–92. 链接1

[15] Del Arco J, Cejudo-Sanches J, Esteban I, Clemente-Suárez VJ, Hormigo D, Perona A, et al. Enzymatic production of dietary nucleotides from low-soluble purine bases by an efficient, thermostable and alkali-tolerant biocatalyst. Food Chem 2017;237:605–11. 链接1

[16] Sauer N, Eklund M, Hoerner S, Bauer E, Jezierny D, Mosenthin R. Short-term effect of dietary yeast nucleotide supplementation on total and diurnal variation of small intestinal enzyme activities in piglets. J Anim Sci 2012;90(Suppl 4):179–81. 链接1

[17] Cai X, Bao L, Wang N, Ren J, Chen Q, Xu M, et al. Dietary nucleotides protect against alcoholic liver injury by attenuating inflammation and regulating gut microbiota in rats. Food Funct 2016;7(6):2898–908. 链接1

[18] Khatun F, Kurata K, Chuwattanakul V, Sugiyama M, Kaneko Y, Harashima S. Increased transcription of RPL40A and RPL40B is important for the improvement of RNA production in Saccharomyces cerevisiae. J Biosci Bioeng 2013;116(4):423–32. 链接1

[19] Li B, Chen X, Ren H, Li L, Xiong J, Bai J, et al. Kinetic models of ribonucleic acid fermentation and continuous culture by Candida tropicalis no.121. Bioprocess Biosyst Eng 2012;35(3):415–22. 链接1

[20] Chuwattanakul V, Sugiyama M, Khatun F, Kurata K, Tomita I, Kaneko Y, et al. Increased transcription of NOP15, involved in ribosome biogenesis in Saccharomyces cerevisiae, enhances the production yield of RNA as a source of nucleotide seasoning. J Biosci Bioeng 2012;114(1):17–22. 链接1

[21] Bedade DK, Dev MJ, Singhal RS. Bioreactor studies on acrylamidase produced from Cupriavidus oxalaticus ICTDB921: production, kinetic modeling, and purification. Biochem Eng J 2019;149:107245. 链接1

[22] Bamaalabong PP, Asiedu NY, Neba FA, Addo A. Dynamic behavior, simulations, and kinetic analysis of two dimensional substrate–product inhibitions in batch fermentation processes. Ind Eng Chem Res 2020;59(21):9797–807. 链接1

[23] Almquist J, Cvijovic M, Hatzimanikatis V, Nielsen J, Jirstrand M. Kinetic models in industrial biotechnology—improving cell factory performance. Metab Eng 2014;24:38–60. 链接1

[24] Fan S, Chen S, Tang X, Xiao Z, Deng Q, Yao P, et al. Kinetic model of continuous ethanol fermentation in closed-circulating process with pervaporation membrane bioreactor by Saccharomyces cerevisiae. Bioresour Technol 2015;177:169–75. 链接1

[25] Tanaka S, Kastens S, Fujioka S, Schlüter M, Terasaka K. Mass transfer from freely rising microbubbles in aqueous solutions of surfactant or salt. Chem Eng J 2020;387:121246. 链接1

[26] Nock WJ, Serna-Maza A, Heaven S, Banks CJ. Evaluation of microporous hollow fibre membranes for mass transfer of H2 into anaerobic digesters for biomethanization. J Chem Technol Biotechnol 2019;94(8):2693–701. 链接1

[27] Tirunehe G, Norddahl B. The influence of polymeric membrane gas spargers on hydrodynamics and mass transfer in bubble column bioreactors. Bioprocess Biosyst Eng 2016;39(4):613–26. 链接1

[28] Fujikawa S, Zhang R, Hayama S, Peng G. The control of micro-air-bubble generation by a rotational porous plate. Int J Multiph Flow 2003;29 (8):1221–36. 链接1

[29] Kilonzo PM, Margaritis A, Bergougnou MA, Yu J, Ye Q. Effects of geometrical design on hydrodynamic and mass transfer characteristics of a rectangularcolumn airlift bioreactor. Biochem Eng J 2007;34(3):279–88. 链接1

[30] Atenas M, Clark M, Lazarova V. Holdup and liquid circulation velocity in a rectangular air-lift bioreactor. Ind Eng Chem Res 1999;38(3):944–9. 链接1

[31] Drandev S, Penev KI, Karamanev D. Study of the hydrodynamics and mass transfer in a rectangular air-lift bioreactor. Chem Eng Sci 2016;146:180–8. 链接1

[32] Lu X, Ding J, Wang Y, Shi J. Comparison of the hydrodynamics and mass transfer characteristics of a modified square airlift reactor with common airlift reactors. Chem Eng Sci 2000;55(12):2257–63. 链接1

[33] Xu P. Analytical solution for a hybrid Logistic–Monod cell growth model in batch and continuous stirred tank reactor culture. Biotechnol Bioeng 2020;117 (3):873–8. 链接1

[34] Germec M, Gürler HN, Ozcan A, Erkan SB, Karahalil E, Turhan I. Medium optimization and kinetic modeling for the production of Aspergillus niger inulinase. Bioprocess Biosyst Eng 2020;43(2):217–32. 链接1

[35] Sunarno JN, Prasertsan P, Duangsuwan W, Kongjan P, Cheirsilp B. Mathematical modeling of ethanol production from glycerol by Enterobacter aerogenes concerning the influence of impurities, substrate, and product concentration. Biochem Eng J 2020;155:107471. 链接1

[36] Phukoetphim N, Salakkam A, Laopaiboon P, Laopaiboon L. Kinetic models for batch ethanol production from sweet sorghum juice under normal and high gravity fermentations: logistic and modified Gompertz models. J Biotechnol 2017;243:69–75. 链接1

[37] Balakrishnan R, Tadi SRR, Rajaram SK, Mohan N, Sivaprakasam S. Batch and fed-batch fermentation of optically pure D () lactic acid from Kodo millet (Paspalum scrobiculatum) bran residue hydrolysate: growth and inhibition kinetic modeling. Prep Biochem Biotechnol 2020;50(4):365–78. 链接1

[38] Lim J, Byun HE, Kim B, Park H, Lee JH. Mathematical modeling of acetone– butanol–ethanol fermentation with simultaneous utilization of glucose and xylose by recombinant Clostridium acetobutylicum. Energy Fuels 2019;33 (9):8620–31. 链接1

[39] Zheng Z, Chen Y, Zhan X, Gao M, Wang Z. Mass transfer intensification in a novel airlift reactor assembly with helical sieve plates. Chem Eng J 2018;342:61–70. 链接1

[40] Salehpour R, Jalilnejad E, Nalband M, Ghasemzadeh K. Hydrodynamic behavior of an airlift reactor with net draft tube withdifferent configurations: numerical evaluation using CFD technique. Particuology 2020;51:91–108. 链接1

[41] Li X, Chen Y, Zheng Z, Gao M, Wang Z, Zhang K, et al. Power-saving airlift bioreactor with helical sieveplates: developmental and performance studies. Chem Eng Res Des 2020;158:1–11. 链接1

[42] Han M, Laari A, Koiranen T. Effect of aeration mode on the performance of center- and annulus-rising internal-loop airlift bioreactors. Can J Chem Eng 2018;96(1):367–76. 链接1

[43] Rosa EAR, Bianchini LF, da Silva Ramos RCP, Arantes AB, da Silva RF, Glassey J. Hydrodynamics of split-rectangle-internal loop airlift bioreactor with variations in riser and downcomer cross-sectional areas based on the golden ratio. J Chem Technol Biotechnol 2019;94(4):1323–9. 链接1

[44] Kumar N, Gupta R, Bansal A. Effect of surface tension on hydrodynamics and mass transfer coefficient in airlift reactors. Chem Eng Technol 2020;43 (5):995–1004. 链接1

[45] Magdouli S, Brar SK, Blais JF. Morphology and rheological behaviour of Yarrowia lipolytica: impact of dissolved oxygen level on cell growth and lipid composition. Process Biochem 2018;65:1–10. 链接1

[46] Bull DN, Young MD. Enhanced product formation in continuous fermentations with microbial cell recycle. Biotechnol Bioeng 1981;23(2):373–89. 链接1

[47] Pappu JSM, Gummadi SN. Modeling and simulation of xylitol production in bioreactor by Debaryomyces nepalensis NCYC 3413 using unstructured and artificial neural network models. Bioresour Technol 2016;220:490–9. 链接1

[48] Chang G, Gao N, Tian G, Wu Q, Chang M, Wang X. Improvement of docosahexaenoic acid production on glycerol by Schizochytrium sp. S31 with constantly high oxygen transfer coefficient. Bioresour Technol 2013;142:400–6. 链接1

[49] Yamada R, Nishikawa R, Wakita K, Ogino H. Rapid and stable production of 2,3- butanediol by an engineered Saccharomyces cerevisiae strain in a continuous airlift bioreactor. J Ind Microbiol Biotechnol 2018;45(5):305–11. 链接1

[50] Sung MG, Lee B, Kim CW, Nam K, Chang YK. Enhancement of lipid productivity by adopting multi-stage continuous cultivation strategy in Nannochloropsis gaditana. Bioresour Technol 2017;229:20–5. 链接1

[51] Maitra S, Narang A. Existence of a scaling relation in continuous cultures of Scheffersomyces stipitis: the steady states are completely determined by the ratio of carbon and oxygen uptake rates. Biotechnol Biofuels 2019;12 (1):19. 链接1

相关研究