期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2022年 第13卷 第6期 doi: 10.1016/j.eng.2021.07.027

超高通量、灵活靶向的全基因库分型技术HD-Marker

a MOE Key Laboratory of Marine Genetics and Breeding and Sars-Fang Center, Ocean University of China, Qingdao 266003, China
b Laboratory for Marine Biology and Biotechnology, Pilot Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
c Laboratory for Marine Fisheries Science and Food Production Processes, Pilot Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
d Laboratory of Tropical Marine Germplasm Resources and Breeding Engineering, Sanya Oceanographic Institution, Ocean University of China, Sanya 572000, China

收稿日期: 2021-01-26 修回日期: 2021-06-05 录用日期: 2021-07-06 发布日期: 2021-12-22

下一篇 上一篇

摘要

在生物、医学领域,靶向分型技术是检测已知变异位点的有效方法。然而,在非模式生物上,如何高效、低 成本地进行大规模靶向位点分型仍然是一大挑战。为了解决这一问题,本文提出了一种基于液相分子杂 交的超高通量HD-Marker技术,该方法可在单管内实现全基因库中86 000个位点的同时靶向分析。与以 往的Illumina GoldenGate技术和低通量HD-Marker技术相比,单管内分析位点的数目分别提升了27倍和6倍。本研究对多种量级的HD-Marker技术(30 k、56 k和86 k)进行了综合评价,结果显示所有量级均具 有较高的捕获率(约96%)和基因分型准确率(约96%)。因在成本(单位点分型成本低至0.0006美元)和 技术灵活性等方面的优势,超高通量的HD-Marker技术在非模式生物的遗传、生态和进化研究中具有广 阔的应用潜力。

补充材料

图片

图1

图2

图3

图4

图5

图6

参考文献

[ 1 ] Stapley J, Reger J, Feulner PGD, Smadja C, Galindo J, Ekblom R, et al. Adaptation genomics: the next generation. Trends Ecol Evol 2010;‍25(12):705‒12. 链接1

[ 2 ] Shafer ABA, Wolf JBW, Alves PC, Bergström L, Bruford MW, Brännström I, et al. Genomics and the challenging translation into conservation practice. Trends Ecol Evol 2015;30(2):78‒87. 链接1

[ 3 ] Helyar SJ, Hemmer-Hansen J, Bekkevold D, Taylor MI, Ogden R, Limborg MT, et al. Application of SNPs for population genetics of nonmodel organisms: new opportunities and challenges. Mol Ecol Resour 2011;11(Suppl 1):123‒136. 链接1

[ 4 ] Davey JW, Hohenlohe PA, Etter PD, Boone JQ, Catchen JM, Blaxter ML. Genome-wide genetic marker discovery and genotyping using next-generation sequencing. Nat Rev Genet 2011;12(7):499‒510. 链接1

[ 5 ] Jiang Z, Wang H, Michal JJ, Zhou X, Liu B, Woods LCS, et al. Genome wide sampling sequencing for SNP genotyping, methods: challenges and future development. Int J Biol Sci 2016;12(1):100‒8. 链接1

[ 6 ] Andrews KR, Good JM, Miller MR, Luikart G, Hohenlohe PA. Harnessing the power of RADseq for ecological and evolutionary genomics. Nat Rev Genet 2016;17(2):81‒92. 链接1

[ 7 ] Baird NA, Etter PD, Atwood TS, Currey MC, Shiver AL, Lewis ZA, et al. Rapid SNP discovery and genetic mapping using sequenced RAD markers. PLoS One 2008;3(10):e3376. 链接1

[ 8 ] Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, et al. A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS One 2011;6(5):e19379. 链接1

[ 9 ] Wang S, Meyer E, McKay JK, Matz MV. 2b-RAD: a simple and flexible method for genome-wide genotyping. Nat Methods 2012;9(8):808‒10. 链接1

[10] Wang S, Liu P, Lv J, Li Y, Cheng T, Zhang L, et al. Serial sequencing of isolength RAD tags for cost-efficient genome-wide profiling of genetic and epigenetic variations. Nat Protoc 2016;11(11):2189‒200. 链接1

[11] De Wit P, Pespeni MH, Palumbi SR. SNP genotyping and population genomics from expressed sequences - current advances and future possibilities. Mol Ecol 2015;24(10):2310‒23. 链接1

[12] Jiao W, Fu X, Li J, Li L, Feng L, Lv J, et al. Large-scale development of gene-associated single-nucleotide polymorphism markers for molluscan population genomic, comparative genomic, and genome-wide association studies. DNA Res 2014;21(2):183‒93. 链接1

[13] Jones MR, Good JM. Targeted capture in evolutionary and ecological genomics. Mol Ecol 2016;25(1):185‒202. 链接1

[14] Zenger KR, Khatkar MS, Jones DB, Khalilisamani N, Jerry DR, Raadsma HW. Genomic selection in aquaculture: application, limitations and opportunities with special reference to Marine Shrimp and Pearl Oysters. Front Genet 2019;9:693. 链接1

[15] Asan Y, Xu Y, Jiang H, Tyler-Smith C, Xue Y, Jiang T, et al. Comprehensive comparison of three commercial human whole-exome capture platforms. Genome Biol 2011;12(9):R95. 链接1

[16] Fan B, Du Z, Gorbach DM, Rothschild MF. Development and application of high-density SNP arrays in genomic studies of domestic animals. Asian. Austral J Anim 2010;23(7):833‒47. 链接1

[17] Rasheed A, Hao Y, Xia X, Khan A, Xu Y, Varshney RK, et al. Crop breeding chips and genotyping platforms: progress, challenges, and perspectives. Mol Plant 2017;10(8):1047‒64. 链接1

[18] Mangal M, Bansal S, Sharma SK, Gupta RK. Molecular detection of foodborne pathogens: a rapid and accurate answer to food safety. Crit Rev Food Sci Nutr 2016;56(9):1568‒84. 链接1

[19] Guppy JL, Jones DB, Jerry DR, Wade NM, Raadsma HW, Huerlimann R, et al. The state of “Omics” research for farmed penaeids: advances in research and impediments to industry utilization. Front Genet 2018;9:282. 链接1

[20] Albrechtsen A, Nielsen FC, Nielsen R. Ascertainment biases in SNP chips affect measures of population divergence. Mol Biol Evol 2010;27(11):2534‒47. 链接1

[21] Mertes F, Elsharawy A, Sauer S, van Helvoort JMLM, van der Zaag PJ, Franke A, et al. Targeted enrichment of genomic DNA regions for next-generation sequencing. Brief Funct Genomics 2011;10(6):374‒86. 链接1

[22] Mamanova L, Coffey AJ, Scott CE, Kozarewa I, Turner EH, Kumar A, et al. Target-enrichment strategies for next-generation sequencing. Nat Methods 2010;7(2):111‒8. 链接1

[23] Tewhey R, Warner JB, Nakano M, Libby B, Medkova M, David PH, et al. Microdroplet-based PCR enrichment for large-scale targeted sequencing. Nat Biotechnol 2009;27(11):1025‒31. 链接1

[24] Damiati E, Borsani G, Giacopuzzi E. Amplicon-based semiconductor sequencing of human exomes: performance evaluation and optimization strategies. Hum Genet 2016;135(5):499‒511. 链接1

[25] Kozarewa I, Armisen J, Gardner AF, Slatko BE, Hendrickson CL. Overview of Target Enrichment Strategies. Curr Protoc Mol Biol 2015;112:7.21.1‒7.21.23. 链接1

[26] Teer JK, Bonnycastle LL, Chines PS, Hansen NF, Aoyama N, Swift AJ, et al., and the NISC Comparative Sequencing Program. Systematic comparison of three genomic enrichment methods for massively parallel DNA sequencing. Genome Res 2010;20(10):1420‒31. 链接1

[27] Clark MJ, Chen R, Lam HYK, Karczewski KJ, Chen R, Euskirchen G, et al. Performance comparison of exome DNA sequencing technologies. Nat Biotechnol 2011;29(10):908‒14. 链接1

[28] Schott RK, Panesar B, Card DC, Preston M, Castoe TA, Chang BSW. Targeted Capture of Complete Coding Regions across Divergent Species. Genome Biol Evol 2017;9(2):398‒414.

[29] Sulonen AM, Ellonen P, Almusa H, Lepistö M, Eldfors S, Hannula S, et al. Comparison of solution-based exome capture methods for next generation sequencing. Genome Biol 2011;12(9):R94. 链接1

[30] Gasc C, Peyretaillade E, Peyret P. Sequence capture by hybridization to explore modern and ancient genomic diversity in model and nonmodel organisms. Nucleic Acids Res 2016;44(10):4504‒18. 链接1

[31] Chung J, Son DS, Jeon HJ, Kim KM, Park G, Ryu GH, et al. The minimal amount of starting DNA for Agilent’s hybrid capture-based targeted massively parallel sequencing. Sci Rep 2016;6:26732. 链接1

[32] Zhang Y, Li B, Li C, Cai Q, Zheng W, Long J. Improved variant calling accuracy by merging replicates in whole-exome sequencing studies. BioMed Res Int 2014;2014:319534. 链接1

[33] Yi X, Liang Y, Huerta-Sanchez E, Jin X, Cuo ZXP, Pool JE, et al. Sequencing of 50 human exomes reveals adaptation to high altitude. Science 2010;329(5987):75‒8. 链接1

[34] Yigit E, Zhang Q, Xi L, Grilley D, Widom J, Wang J, et al. High-resolution nucleosome mapping of targeted regions using BAC-based enrichment. Nucleic Acids Res 2013;41(7):e87. 链接1

[35] Cao H, Wu J, Wang Y, Jiang H, Zhang T, Liu X, et al. An integrated tool to study MHC region: accurate SNV detection and HLA genes typing in human MHC region using targeted high-throughput sequencing. PLoS One 2013;8(7):e69388. 链接1

[36] Lv J, Jiao W, Guo H, Liu P, Wang R, Zhang L, et al. HD-Marker: a highly multiplexed and flexible approach for targeted genotyping of more than 10,000 genes in a single-tube assay. Genome Res 2018;28(12):1919‒30. 链接1

[37] Sambrook J, Fritsch EF, Maniatis T. Molecular cloning, a laboratory manual. 2nd ed. Now York: Cold Spring Harbor Laboratory Press; 1989.

[38] Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009;25(14):1754‒60. 链接1

[39] Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al., and the 1000 Genome Project Data Processing Subgroup. The sequence alignment/map format and SAMtools. Bioinformatics 2009;25(16):2078‒9.

[40] Koboldt DC, Chen K, Wylie T, Larson DE, McLellan MD, Mardis ER, et al. VarScan: variant detection in massively parallel sequencing of individual and pooled samples. Bioinformatics 2009;25(17):2283‒5. 链接1

[41] Liu F, Li Y, Yu H, Zhang L, Hu J, Bao Z, et al. MolluscDB: an integrated functional and evolutionary genomics database for the hyper-diverse animal phylum Mollusca. Nucleic Acids Res 2021;49(D1):D1556. 链接1

[42] Yang Z, Zhang L, Hu J, Wang J, Bao Z, Wang S. The evo-devo of molluscs: Insights from a genomic perspective. Evolution & Development 2020;22(6):409‒424. 链接1

[43] Hou R, Bao Z, Wang S, Su H, Li Y, Du H, et al. Transcriptome sequencing and de novo analysis for Yesso scallop (Patinopecten yessoensis) using 454 GS FLX. PLoS One 2011;6(6):e21560. 链接1

[44] Wang S, Hou R, Bao Z, Du H, He Y, Su H, et al. Transcriptome sequencing of Zhikong scallop (Chlamys farreri) and comparative transcriptomic analysis with Yesso scallop (Patinopecten yessoensis). PLoS One 2013;8(5):e63927. 链接1

[45] Wang S, Zhang J Jiao W, Li J, Xun X, Sun Y, et al. Scallop genome provides insights into evolution of bilaterian karyotype and development. Nat Ecol Evol 2017;1(5):0120. 链接1

[46] Thomson MJ. High-throughput SNP genotyping to accelerate crop improvement. Plant Breed Biotechnol 2014;2(3):195‒212. 链接1

[47] Syvänen AC. Toward genome-wide SNP genotyping. Nat Genet 2005;37(S6 Suppl):S5‒10. 链接1

[48] Fan JB, Chee MS, Gunderson KL. Highly parallel genomic assays. Nat Rev Genet 2006;7(8):632‒44. 链接1

[49] Perkel J. SNP genotyping: six technologies that keyed a revolution. Nat Methods 2008;5(5):447‒54. 链接1

[50] Paux E, Sourdille P, Mackay I, Feuillet C. Sequence-based marker development in wheat: advances and applications to breeding. Biotechnol Adv 2012;30(5):1071‒88. 链接1

[51] Hayes B, Goddard M. Genome-wide association and genomic selection in animal breeding. Genome 2010;53(11):876‒83. 链接1

[52] Goddard ME, Hayes BJ, Meuwissen THE. Using the genomic relationship matrix to predict the accuracy of genomic selection. J Anim Breed Genet 2011;128(6):409‒21. 链接1

[53] Ballester LY, Luthra R, Kanagal-Shamanna R, Singh RR. Advances in clinical next-generation sequencing: target enrichment and sequencing technologies. Expert Rev Mol Diagn 2016;16(3):357‒72. 链接1

[54] Robledo D, Palaiokostas C, Bargelloni L, Martínez P, Houston R. Applications of genotyping by sequencing in aquaculture breeding and genetics. Rev Aquacult 2018;10(3):670‒82. 链接1

[55] de Oliveira AA, Guimaraes LJM, Guimaraes CT, de Oliveira Guimaraes PE, de Oliveira Pinto M, Pastina MM, et al. Single nucleotide polymorphism calling and imputation strategies for cost-effective genotyping in a tropical maize breeding program. Crop Sci 2020;60(6):3066‒82. 链接1

[56] Tsairidou S, Hamilton A, Robledo D, Bron JE, Houston RD. Optimizing low-cost genotyping and imputation strategies for genomic selection in Atlantic Salmon. G3-Genes Genom Genet 2020;10(2):581‒90. 链接1

[57] Luo Z, Yu Y, Xiang J, Li F. Genomic selection using a subset of SNPs identified by genome-wide association analysis for disease resistance traits in aquaculture species. Aquaculture 2021;539:736620. 链接1

相关研究