期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2023年 第22卷 第3期 doi: 10.1016/j.eng.2021.07.032

基于临床可用的亚甲基蓝近红外二区成像用于泌尿系统结构及功能成像的研究

a Department of Urology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
b Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
c Department of Urology, University of Leipzig, Leipzig 04103, Germany
d State Key Laboratory of Modern Optical Instrumentation, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310058, China

收稿日期: 2021-02-10 修回日期: 2021-07-15 录用日期: 2021-07-15 发布日期: 2022-04-25

下一篇 上一篇

摘要

精准的结构和功能成像对于泌尿系统疾病的诊断和预后至关重要。近红外二区光谱区域(second nearinfrared spectral region, NIR-II, 1000~1700 nm)荧光生物成像相较于传统的荧光生物成像具有更高的空间分辨率、更深的穿透力和更好的信噪比,但其临床适用性有限。在此,本文首次报道了基于临床可用且经肾脏排泄的荧光染料亚甲基蓝(methylene blue, MB)对活体泌尿系统进行NIR-II 荧光成像,该技术不仅可实现清晰的有创/无创尿路造影,而且还能有效且无创地检测肾功能。以上研究结果表明MB辅助的NIR-II 荧光成像在临床/基础研究中泌尿系统结构和功能成像领域中具有较大的应用前景。

补充材料

图片

图1

图2

图3

图4

图5

图6

参考文献

[ 1 ] Essman SC. Contrast cystography. Clin Tech Small Anim Pract 2005;20(1):46‒51. 链接1

[ 2 ] McDonald RJ, McDonald JS, Carter RE, Hartman RP, Katzberg RW, Kallmes DF, et al. Intravenous contrast material exposure is not an independent risk factor for dialysis or mortality. Radiology 2014;273(3):714‒25. 链接1

[ 3 ] Bjurlin MA, Turkbey B, Rosenkrantz AB, Gaur S, Choyke PL, Taneja SS. Imaging the high-risk prostate cancer patient: current and future approaches to staging. Urology 2018;116:3‒12. 链接1

[ 4 ] Moosavi B, Shabana WM, El-Khodary M, van der Pol CB, Flood TA, McInnes MDF, et al. Intracellular lipid in clear cell renal cell carcinoma tumor thrombus and metastases detected by chemical shift (in and opposed phase) MRI: radiologic-pathologic correlation. Acta Radiol 2016;57(2):241‒8. 链接1

[ 5 ] Morris MJ, Autio KA, Basch EM, Danila DC, Larson S, Scher HI. Monitoring the clinical outcomes in advanced prostate cancer: what imaging modalities and other markers are reliable? Semin Oncol 2013;40(3):375‒92. 链接1

[ 6 ] Chawla LS, Eggers PW, Star RA, Kimmel PL. Acute kidney injury and chronic kidney disease as interconnected syndromes. N Engl J Med 2014;371(1):58‒66. 链接1

[ 7 ] Taylor AT, Lipowska M, Cai H. 99mTc(CO)3(NTA) and 131I-OIH: comparable plasma clearances in patients with chronic kidney disease. J Nucl Med 2013;54(4):578‒84. 链接1

[ 8 ] Grenier N, Basseau F, Ries M, Tyndal B, Jones R, Moonen C. Functional MRI of the kidney. Abdom Imaging 2003;28(2):164‒75. 链接1

[ 9 ] Taylor AT. Radionuclides in nephrourology, part 1: radiopharmaceuticals, quality control, and quantitative indices. J Nucl Med 2014;55(4):608‒15. 链接1

[10] Cheng D, Peng J, Lv Y, Su D, Liu D, Chen M, et al. De novo design of chemical stability near-infrared molecular probes for high-fidelity hepatotoxicity evaluation in vivo. J Am Chem Soc 2019;141(15):6352‒61. 链接1

[11] Feng Z, Yu X, Jiang M, Zhu L, Zhang Y, Yang W, et al. Excretable IR-820 for in vivo NIR-II fluorescence cerebrovascular imaging and photothermal therapy of subcutaneous tumor. Theranostics 2019;9(19):5706‒19. 链接1

[12] Sun C, Li B, Zhao M, Wang S, Lei Z, Lu L, et al. J-aggregates of cyanine dye for NIR-II in vivo dynamic vascular imaging beyond 1500 nm. J Am Chem Soc 2019;141(49):19221‒5. 链接1

[13] Hori Y, Otomura N, Nishida A, Nishiura M, Umeno M, Suetake I, et al. Synthetic-molecule/protein hybrid probe with fluorogenic switch for live-cell imaging of DNA methylation. J Am Chem Soc 2018;140(5):1686‒90. 链接1

[14] Ding F, Zhan Y, Lu X, Sun Y. Recent advances in near-infrared II fluorophores for multifunctional biomedical imaging. Chem Sci 2018;9(19):4370‒80. 链接1

[15] Zhu S, Hu Z, Tian R, Yung BC, Yang Q, Zhao S, et al. Repurposing cyanine NIR-I dyes accelerates clinical translation of near-infrared-II (NIR-II) bioimaging. Adv Mater 2018;30(34):e1802546. 链接1

[16] Carr JA, Franke D, Caram JR, Perkinson CF, Saif M, Askoxylakis V, et al. Shortwave infrared fluorescence imaging with the clinically approved near-infrared dye indocyanine green. Proc Natl Acad Sci USA 2018;115(17):4465‒70. 链接1

[17] Zebibula A, Alifu N, Xia L, Sun C, Yu X, Xue D, et al. Ultrastable and biocompatible NIR-II quantum dots for functional bioimaging. Adv Funct Mater 2018;28(9):1703451. 链接1

[18] Del Rosal B, Villa I, Jaque D, Sanz-Rodríguez F. In vivo autofluorescence in the biological windows: the role of pigmentation. J Biophotonics 2016;9(10):1059‒67. 链接1

[19] Zhang M, Yue J, Cui R, Ma Z, Wan H, Wang F, et al. Bright quantum dots emitting at ∼1,600 nm in the NIR-IIb window for deep tissue fluorescence imaging. Proc Natl Acad Sci USA 2018;115(26):6590‒5. 链接1

[20] Hong G, Robinson JT, Zhang Y, Diao S, Antaris AL, Wang Q, et al. In vivo fluorescence imaging with Ag2S quantum dots in the second near-infrared region. Angew Chem Int Ed Engl 2012;51(39):9818‒21. 链接1

[21] Diao S, Hong G, Robinson JT, Jiao L, Antaris AL, Wu JZ, et al. Chirality enriched (12,1) and (11,3) single-walled carbon nanotubes for biological imaging. J Am Chem Soc 2012;134(41):16971‒4. 链接1

[22] Robinson JT, Hong G, Liang Y, Zhang B, Yaghi OK, Dai H. In vivo fluorescence imaging in the second near-infrared window with long circulating carbon nanotubes capable of ultrahigh tumor uptake. J Am Chem Soc 2012;134(25):10664‒9. 链接1

[23] Hong G, Diao S, Chang J, Antaris AL, Chen C, Zhang B, et al. Through-skull fluorescence imaging of the brain in a new near-infrared window. Nat Photonics 2014;8(9):723‒30. 链接1

[24] Li Y, Cai Z, Liu S, Zhang H, Wong STH, Lam JWY, et al. Design of AIEgens for near-infrared IIb imaging through structural modulation at molecular and morphological levels. Nat Commun 2020;11(1):1255. 链接1

[25] Zheng Z, Li D, Liu Z, Peng HQ, Sung HHY, Kwok RTK, et al. Aggregation-induced nonlinear optical effects of AIEgen nanocrystals for ultradeep in vivo bioimaging. Adv Mater 2019;31(44):e1904799. 链接1

[26] Alifu N, Zebibula A, Qi J, Zhang H, Sun C, Yu X, et al. Single-molecular near-infrared-II theranostic systems: ultrastable aggregation-induced emission nanoparticles for long-term tracing and efficient photothermal therapy. ACS Nano 2018;12(11):11282‒93. 链接1

[27] Qi J, Sun C, Zebibula A, Zhang H, Kwok RTK, Zhao X, et al. Real-time and high-resolution bioimaging with bright aggregation-induced emission dots in short-wave infrared region. Adv Mater 2018;30(12):e1706856. 链接1

[28] Wang R, Li X, Zhou L, Zhang F. Epitaxial seeded growth of rare-earth nanocrystals with efficient 800 nm near-infrared to 1525 nm short-wavelength infrared downconversion photoluminescence for in vivo bioimaging. Angew Chem Int Ed Engl 2014;53(45):12086‒90. 链接1

[29] Wang P, Fan Y, Lu L, Liu L, Fan L, Zhao M, et al. NIR-II nanoprobes in-vivo assembly to improve image-guided surgery for metastatic ovarian cancer. Nat Commun 2018;9(1):2898. 链接1

[30] Naczynski DJ, Tan MC, Zevon M, Wall B, Kohl J, Kulesa A, et al. Rare-earth-doped biological composites as in vivo shortwave infrared reporters. Nat Commun 2013;4(1):2199. 链接1

[31] Alshehri R, Ilyas AM, Hasan A, Arnaout A, Ahmed F, Memic A. Carbon nanotubes in biomedical applications: factors, mechanisms, and remedies of toxicity. J Med Chem 2016;59(18):8149‒67. 链接1

[32] Wang Y, Hu R, Lin G, Roy I, Yong KT. Functionalized quantum dots for biosensing and bioimaging and concerns on toxicity. ACS Appl Mater Interfaces 2013;5(8):2786‒99. 链接1

[33] Yu X, Feng Z, Cai Z, Jiang M, Xue D, Zhu L, et al. Deciphering of cerebrovasculatures via ICG-assisted NIR-II fluorescence microscopy. J Mater Chem B 2019;7(42):6623‒9. 链接1

[34] Winer JH, Choi HS, Gibbs-Strauss SL, Ashitate Y, Colson YL, Frangioni JV. Intraoperative localization of insulinoma and normal pancreas using invisible near-infrared fluorescent light. Ann Surg Oncol 2010;17(4):1094‒100. 链接1

[35] Verbeek FPR, van der Vorst JR, Schaafsma BE, Swijnenburg RJ, Gaarenstroom KN, Elzevier HW, et al. Intraoperative near infrared fluorescence guided identification of the ureters using low dose methylene blue: a first in human experience. J Urol 2013;190(2):574‒9. 链接1

[36] Tummers QRJG, Verbeek FPR, Schaafsma BE, Boonstra MC, van der Vorst JR, Liefers GJ, et al. Real-time intraoperative detection of breast cancer using near-infrared fluorescence imaging and methylene blue. Eur J Surg Oncol 2014;40(7):850‒8. 链接1

[37] Matsui A, Tanaka E, Choi HS, Kianzad V, Gioux S, Lomnes SJ, et al. Real-time, near-infrared, fluorescence-guided identification of the ureters using methylene blue. Surgery 2010;148(1):78‒86. 链接1

[38] Semonin OE, Johnson JC, Luther JM, Midgett AG, Nozik AJ, Beard MC. Absolute photoluminescence quantum yields of IR-26 dye, PbS, and PbSe quantum dots. J Phys Chem Lett 2010;1(16):2445‒50. 链接1

[39] Antaris AL, Chen H, Cheng K, Sun Y, Hong G, Qu C, et al. A small-molecule dye for NIR-II imaging. Nat Mater 2016;15(2):235‒42. 链接1

[40] Penna FJ, Caldamone A, Koyle MA. Coming full circle with vesicoureteral reflux: from Hutch to bladder and bowel dysfunction. J Pediatr Urol 2017;13(2):189‒91.

[41] Sodickson A, Baeyens PF, Andriole KP, Prevedello LM, Nawfel RD, Hanson R, et al. Recurrent CT, cumulative radiation exposure, and associated radiation-induced cancer risks from CT of adults. Radiology 2009;251(1):175‒84. 链接1

[42] DiSanto AR, Wagner JG. Pharmacokinetics of highly ionized drugs I: methylene blue—whole blood, urine, and tissue assays. J Pharm Sci 1972;61(4):598‒602. 链接1

[43] DiSanto AR, Wagner JG. Pharmacokinetics of highly ionized drugs II: methylene blue—absorption, metabolism, and excretion in man and dog after oral administration. J Pharm Sci 1972;61(7):1086‒90. 链接1

[44] Datta S, Wheatstone S, Challacombe B. The acute management of iatrogenic urological injuries; strategies and mind-set for the urologist attending an unfamiliar operating theatre. BJU Int 2013;112(5):540‒2. 链接1

[45] Brandes S, Coburn M, Armenakas N, McAninch J. Diagnosis and management of ureteric injury: an evidence-based analysis. BJU Int 2004;94(3):277‒89. 链接1

[46] Delacroix SEJr, Winters JC. Urinary tract injuries: recognition and management. Clin Colon Rectal Surg 2010;23(3):221. 链接1

[47] Yu M, Liu J, Ning X, Zheng J. High-contrast noninvasive imaging of kidney clearance kinetics enabled by renal clearable nanofluorophores. Angew Chem Int Ed Engl 2015;54(51):15434‒8. 链接1

[48] Yu M, Zhou J, Du B, Ning X, Authement C, Gandee L, et al. Noninvasive staging of kidney dysfunction enabled by renal-clearable luminescent gold nanoparticles. Angew Chem Int Ed Engl 2016;55(8):2787‒91. 链接1

[49] Huang J, Lyu Y, Li J, Cheng P, Jiang Y, Pu K. A renal-clearable duplex optical reporter for real-time imaging of contrast-induced acute kidney injury. Angew Chem Int Ed Engl 2019;58(49):17796‒804. 链接1

[50] Huang J, Xie C, Zhang X, Jiang Y, Li J, Fan Q, et al. Renal-clearable molecular semiconductor for second near-infrared fluorescence imaging of kidney dysfunction. Angew Chem Int Ed Engl 2019;58(42):15120‒7. 链接1

[51] Huang J, Weinfurter S, Daniele C, Perciaccante R, Federica R, Ciana LD, et al. Zwitterionic near infrared fluorescent agents for noninvasive real-time transcutaneous assessment of kidney function. Chem Sci 2017;8(4):2652‒60. 链接1

相关研究