期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2022年 第11卷 第4期 doi: 10.1016/j.eng.2021.08.017

用跨学科网络组织化研究框架解释食物-能源-水的纽带关系

a Department of Biosystems Engineering and Soil Science, The University of Tennessee, Knoxville, TN 37996, USA
b Center for Environmental Biotechnology, The University of Tennessee, Knoxville, TN 37996, USA
c Institute for a Secure and Sustainable Environment, The University of Tennessee, Knoxville, TN 37996, USA
d Department of Microbiology, The University of Tennessee, Knoxville, TN 37996, USA
e Department of Civil and Environmental Engineering, The University of Tennessee, Knoxville, TN 37996, USA
f Biosciences Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA

收稿日期: 2021-01-23 修回日期: 2021-07-07 录用日期: 2021-08-10 发布日期: 2021-10-22

下一篇 上一篇

摘要

城市化、人口增长以及食物-能源-水(food-energy-water, FEW)的加速消耗给经济、环境和社会(economic, environmental, and social, ESS)的可持续性发展带来了前所未有的挑战。当今世界正加速从自然生态系统向管理生态系统过渡,因此了解FEW 系统对实现联合国可持续发展目标(sustainable development goal, SDG)的潜在影响很有必要。由于FEW系统及相关网络具备复杂性和新兴行为,人们无法通过单一学科研究对其做出全面理解或有效预测,这是现存的主要障碍。本文提出了一个组织化研究框架,推动自上而下、跨学科地量化FEW系统和ESS系统间的相互关系。相关方法包括改善跨部门、跨尺度的协调互动,扩展和多样化供应链网络,革新技术促进资源的有效利用。这一框架可以指导战略解决方案的制定,削弱地区或国家内部不同部门对FEW资源的竞争,并在实施可持续发展议程时最大限度减少FEW资源及其可用性分配不平等的现象。

图片

图1

图2

参考文献

[ 1 ] Bleischwitz R, Spataru C, VanDeveer SD, Obersteiner M, van der Voet E, Johnson C, et al. Resource nexus perspectives towards the United Nations sustainable development goals. Nat Sustain 2018;1(12):737–43. 链接1

[ 2 ] Young OR, Guttman D, Qi Ye, Bachus K, Belis D, Cheng H, et al. Institutionalized governance processes: comparing environmental problem solving in China and the United States. Glob Environ Change 2015;31:163–73. 链接1

[ 3 ] Ghodsvali M, Krishnamurthy S, de Vries B. Review of transdisciplinary approaches to food–water–energy nexus: a guide towards sustainable development. Environ Sci Policy 2019;101:266–78. 链接1

[ 4 ] Zhuang J, Sun H, Sayler G, Kline KL, Dale VH, Jin M, et al. Food–energy–water crises in the United States and China: commonalities and asynchronous experiences support integration of global efforts. Environ Sci Technol 2021;55 (3):1446–55. 链接1

[ 5 ] Daher BT, Mohtar RH. Water–energy–food (WEF) Nexus Tool 2.0: guiding integrative resource planning and decision-making. Water Intl 2015;40(5–6): 748–71.

[ 6 ] Mohtar RH, Lawford R. Present and future of the water–energy–food nexus and the role of the community of practice. J Environ Stud Sci 2016;6(1):192–9. 链接1

[ 7 ] Simpson GB, Jewitt GPW. The development of the water–energy–food nexus as a framework for achieving resource security: a review. Front Environ Sci 2019;7:8. 链接1

[ 8 ] Rasul G, Neupane N. Improving policy coordination across the water, energy, and food, sectors in South Asia: a framework. Front Sustain Food Syst 2021;5:602475. 链接1

[ 9 ] Mohtar RH. An integrated sustainability index for effective water policy. In: Initiative TWEFW, editor. Water security: the water–food–energy–climate nexus. Washington; DC: Island Press; 2011. p. 217–9. 链接1

[10] Mahlknecht J, González-Bravo R, Loge FJ. Water–energy–food security: a nexus perspective of the current situation in Latin America and the Caribbean. Energy 2020;194:116824. 链接1

[11] Jha K, Doshi A, Patel P, Shah M. A comprehensive review on automation in agriculture using artificial intelligence. Artif Intell Agric 2019;2:1–12. 链接1

[12] Jung J, Maeda M, Chang A, Bhandari M, Ashapure A, Landivar-Bowles J. The potential of remote sensing and artificial intelligence as tools to improve the resilience of agriculture production systems. Curr Opin Biotechnol 2021;70:15–22. 链接1

[13] Rasul G, Sharma B. The nexus approach to water–energy–food security: an option for adaptation to climate change. Clim Policy 2016;16(6):682–702. 链接1

[14] Albrecht TR, Crootof A, Scott CA. The water–energy–food nexus: a systematic review of methods for nexus assessment. Environ Res Lett 2018;13(4):043002. 链接1

[15] Daher BT, Mohtar RH, Lee SH, Assi A. Modeling the water–energy–food nexus: a 7-question guideline. In: Salam PA, Shrestha S, Pandey VP, Anal Ak, editors. Water–energy–food nexus: principles and practices. Washington, DC: Wiley; 2017. p. 57–66.

[16] Anser MK, Yousaf Z, Usman B, Nassani AA, Qazi Abro MM, Zaman K. Management of water, energy, and food resources: go for green policies. J Cleaner Prod 2020;251:119662. 链接1

[17] United Nations Department of Economic and Social Affairs, Population Division. World population prospects: data pooklet. ST/ESA/SER. A/424. 2019.

[18] Scanlon BR, Ruddell BL, Reed PM, Hook RI, Zheng C, Tidwell VC, et al. The food– energy–water nexus: transforming science for society. Water Resour Res 2017;53(5):3550–6. 链接1

[19] Zhang S, Zheng M, Zhai H, Ma P, Lyu Y, Hu Y, et al. Effects of hexanal fumigation on fungal spoilage and grain quality of stored wheat. Grain Oil Sci Technol 2021;4(1):10–7. 链接1

[20] Schnell SM. Food miles, local eating, and community supported agriculture: putting local food in its place. Agric Hum Values 2013;30(4):615–28. 链接1

[21] US Department of Energy, Energy Information Administration, Independent Statistics and Analysis. Use of energy explained: energy use for transportation [Internet]. [updated 2021 May 17]. Available from: https://www.eia.gov/ energyexplained/use-of-energy/transportation.php. 链接1

[22] Shepon A, Eshel G, Noor E, Milo R. The opportunity cost of animal-based diets exceeds all food losses. Proc Natl Acad Sci USA 2018;115(15):3804–9. 链接1

[23] Yang L, Wang Y, Wang R, Klemes JJ, de Almeida CMVB, Jin M, et al. Environmental–social–economic footprints of consumption and trade in the Asia-Pacific region. Nat Commun 2020;11:4490. 链接1

[24] Schröder P, Beckers B, Daniels S, Gnädinger F, Maestri E, Marmiroli N, et al. Intensify production, transform biomass to energy and novel goods and protect soils in Europe—a vision how to mobilize marginal lands. Sci Total Environ 2018;616–617:1101–23. 链接1

[25] Wong BBM, Candolin U. Behavioral responses to changing environments. Behav Ecol 2015;26(3):665–73. 链接1

[26] Yan Y, Wang YC, Feng CC, Wan PH, Chang KT. Potential distributional changes of invasive crop pest species associated with global climate change. Appl Geogr 2017;82:83–92. 链接1

[27] Olawuyi D. Sustainable development and the water–energy–food nexus: legal challenges and emerging solutions. Environ Sci Policy 2020;103:1–9. 链接1

[28] Kibler KM, Reinhart D, Hawkins C, Motlagh AM, Wright J. Food waste and the food–energy–water nexus: a review of food waste management alternatives. Waste Manage 2018;74:52–62. 链接1

[29] De Laurentiis V, Corrado S, Sala S. Quantifying household waste of fresh fruit and vegetables in the EU. Waste Manage 2018;77:238–51. 链接1

[30] Zhong T, Si Z, Shi L, Ma L, Liu S. Impact of state-led food localization on suburban districts’ farmland use transformation: greenhouse farming expansion in Nanjing city region. China. Landsc Urban Plan 2020;202:103872. 链接1

[31] Heeb L, Jenner E, Cock MJW. Climate-smart pest management: building resilience of farms and landscapes to changing pest threats. J Pest Sci 2019;92 (3):951–69. 链接1

[32] Deng HM, Wang C, Cai WJ, Liu Y, Zhang LX. Managing the water–energy–food nexus in China by adjusting critical final demands and supply chains: an input–output analysis. Sci Total Environ 2020;720:137635. 链接1

[33] D’Odorico P, Davis KF, Rosa L, Carr JA, Chiarelli D, Dell’Angelo J, et al. The global food–energy–water nexus. Rev Geophys 2018;56(3):456–531. 链接1

[34] Slorach PC, Jeswani HK, Cuéllar-Franca R, Azapagic A. Environmental sustainability in the food–energy–water–health nexus: a new methodology and an application to food waste in a circular economy. Waste Manage 2020;113:359–68. 链接1

[35] van Gevelt T. The water–energy–food nexus: bridging the science–policy divide. Curr Opin Environ Sci Health 2020;13:6–10. 链接1

[36] Liebenguth J. Conceptions of security in global environmental disclosures: exploring the water–energy–food security nexus. Crit Stud Secur 2020;8 (3):189–202. 链接1

[37] Akanda MAI. Seasonal and regional limits to growth of water-intensive crop farming in Bangladesh. Sustain Water Resour Manag 2019;5(2):817–30. 链接1

[38] Nathaniel SP, Nwulu N, Bekun F. Natural resource, globalization, urbanization, human capital, and environmental degradation in Latin American and Caribbean countries. Environ Sci Pollut Res 2021;28(5):6207–21. 链接1

[39] Yu L, Xiao Y, Zeng XT, Li YP, Fan YR. Planning water–energy–food nexus system management under multi-level and uncertainty. J Clean Prod 2020;251:119658. 链接1

[40] Shtull-Trauring E, Bernstein N. Virtual water flows and water-footprint of agricultural crop production, import and export: A case study for Israel. Sci Total Environ 2018;622-623:1438–47. 链接1

相关研究