期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2022年 第19卷 第12期 doi: 10.1016/j.eng.2021.08.020

传统中药治疗新型冠状病毒肺炎的疗效及机制研究进展

a State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
b Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
c Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
d Laboratory of Pharmacology of TCM Formulae Co-Constructed by the Province–Ministry, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
e School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
f Evidence-Based Medicine Center, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
g College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China

# These authors contributed equally to this work.

收稿日期: 2021-05-06 修回日期: 2021-08-01 录用日期: 2021-08-03 发布日期: 2021-10-28

下一篇 上一篇

摘要

在世界范围内,中药已成功用于治疗由SARS-CoV-2 病毒引起的新型冠状病毒肺炎(COVID-19)。然而,中药治疗COVID-19 的药理机制仍不明确。因此,本文结合基于中医理论的药理检测方法,梳理了具有抗病毒感染、调节免疫、改善肺损伤和肺纤维化作用的中药活性化合物以及中药方剂,并对其可能的作用靶点和信号通路进行了总结。这些研究结果表明,COVID-19 的发生发展涉及病毒与受体互作以及炎症免疫激活等错综复杂的调节机制。因此,亟需对中药方剂或中药活性化合物治疗COVID-19 的药效及机制进行更多、更深层次的研究,以确定中药与COVID-19 之间的联系,用现代科技手段阐明中药治疗COVID-19 的药理机制。

图片

图1

图2

图3

图4

参考文献

[ 1 ] Wei PF. Diagnosis and treatment protocol for novel coronavirus pneumonia (trial version 7). Chin Med J 2020;133(9):1087‒95. 链接1

[ 2 ] Bhimraj A, Morgan RL, Shumaker AH, Lavergne V, Baden L, Edwards KM, et al. Infectious Diseases Society of America guidelines on the treatment and management of patients with COVID-19. Clin Infect Dis 2020;ciaa478. 链接1

[ 3 ] Zhou L, Wang XN, Liu XK, Fei X, Liu L, Liu ZL, et al. Case report of Xuanfei Baidu decoction for curing severe cases of COVID-2019. Tianjin J Tradit Chin Med 2021;38(5):556‒9. Chinese.

[ 4 ] Xiong WZ, Wang G, Du J, Ai W. Efficacy of herbal medicine (Xuanfei Baidu decoction) combined with conventional drug in treating COVID-19: a pilot randomized clinical trial. Integr Med Res 2020;9(3):100489. 链接1

[ 5 ] Leung EH, Pan HD, Huang YF, Fan XX, Wang WY, He F, et al. The scientific foundation of Chinese herbal medicine against COVID-19. Engineering 2020;6(10):1099‒107. 链接1

[ 6 ] Shi N, Guo L, Liu B, Bian Y, Chen R, Chen S, et al. Efficacy and safety of Chinese herbal medicine versus lopinavir‒ritonavir in adult patients with coronavirus disease 2019: a non-randomized controlled trial. Phytomedicine 2021;81:153367. 链接1

[ 7 ] Wang Y, Lu C, Li H, Qi W, Ruan L, Bian Y, et al. Efficacy and safety assessment of severe COVID-19 patients with Chinese medicine: a retrospective case series study at early stage of the COVID-19 epidemic in Wuhan. China. J Ethnopharmacol 2021;277:113888. 链接1

[ 8 ] Ma Q, Qiu M, Zhou H, Chen J, Yang X, Deng Z, et al. The study on the treatment of Xuebijing injection (XBJ) in adults with severe or critical corona virus disease 2019 and the inhibitory effect of XBJ against SARS-CoV-2. Pharmacol Res 2020;160:105073. 链接1

[ 9 ] Xu Z, Shi L, Wang Y, Zhang J, Huang L, Zhang C, et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir Med 2020;8(4):420‒2. 链接1

[10] Fehr AR, Perlman S. Coronaviruses: an overview of their replication and pathogenesis. Methods Mol Biol 2015;1282:1‒23.

[11] Malik YA. Properties of coronavirus and SARS-CoV-2. Malays J Pathol 2020;42(1):3‒11.

[12] Schoeman D, Fielding BC. Coronavirus envelope protein: current knowledge. Virol J 2019;16(1):69. 链接1

[13] Yin W, Mao C, Luan X, Shen DD, Shen Q, Su H, et al. Structural basis for inhibition of the RNA-dependent RNA polymerase from SARS-CoV-2 by remdesivir. Science 2020;368(6498):1499‒504. 链接1

[14] Tahir ul Qamar M, Alqahtani SM, Alamri MA, Chen LL. Structural basis of SARS-CoV-2 3CLpro and anti-COVID-19 drug discovery from medicinal plants. J Pharm Anal 2020;10(4):313‒9. 链接1

[15] Zou X, Chen K, Zou J, Han P, Hao J, Han Z. Single-cell RNA-seq data analysis on the receptor ACE2 expression reveals the potential risk of different human organs vulnerable to 2019-nCoV infection. Front Med 2020;14(2):185‒92. 链接1

[16] Li Y, Zhou W, Yang Li, You R. Physiological and pathological regulation of ACE2, the SARS-CoV-2 receptor. Pharmacol Res 2020;157:104833. 链接1

[17] Jin Y, Yang H, Ji W, Wu W, Chen S, Zhang W, et al. Virology, epidemiology, pathogenesis, and control of COVID-19. Viruses 2020;12(4):372. 链接1

[18] Bourgonje AR, Abdulle AE, Timens W, Hillebrands JL, Navis GJ, Gordijn SJ, et al. Angiotensin-converting enzyme 2 (ACE2), SARS-CoV-2 and the pathophysiology of coronavirus disease 2019 (COVID-19). J Pathol 2020;251(3):228‒48. 链接1

[19] Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus. Lancet 2020;395(10223):497‒506. 链接1

[20] Zheng M, Gao Y, Wang G, Song G, Liu S, Sun D, et al. Functional exhaustion of antiviral lymphocytes in COVID-19 patients. Cell Mol Immunol 2020;17(5):533‒5. 链接1

[21] Ni Y, Alu A, Lei H, Wang Y, Wu M, Wei X. Immunological perspectives on the pathogenesis, diagnosis, prevention and treatment of COVID-19. Mol Biomed 2021;2(1):1. 链接1

[22] Bhaskar S, Sinha A, Banach M, Mittoo S, Weissert R, Kass JS, et al. Cytokine storm in COVID-19-immunopathological mechanisms, clinical considerations, and therapeutic approaches: the REPROGRAM consortium position paper. Front Immunol 2020;11:1648. 链接1

[23] Rabaan AA, Al-Ahmed SH, Haque S, Sah R, Tiwari R, Malik YS, et al. SARS-CoV-2, SARS-CoV, and MERS-COV: a comparative overview. Infez Med 2020;28(2):174‒84.

[24] Mackman N, Antoniak S, Wolberg AS, Kasthuri R, Key NS. Coagulation abnormalities and thrombosis in patients infected with SARS-CoV-2 and other pandemic viruses. Arterioscler Thromb Vasc Biol 2020;40(9):2033‒44. 链接1

[25] Reinke LM, Spiegel M, Plegge T, Hartleib A, Nehlmeier I, Gierer S, et al. Different residues in the SARS-CoV spike protein determine cleavage and activation by the host cell protease TMPRSS2. PLoS ONE 2017;12(6):e0179177. 链接1

[26] Ou X, Liu Y, Lei X, Li P, Mi D, Ren L, et al. Author correction: characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV. Nat Commun 2021;12(1):2144. 链接1

[27] Raj VS, Mou H, Smits SL, Dekkers DH, Müller MA, Dijkman R, et al. Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC. Nature 2013;495(7440):251‒4. 链接1

[28] Boonacker E, Van Noorden CJ. The multifunctional or moonlighting protein CD26/DPPIV. Eur J Cell Biol 2003;82(2):53‒73. 链接1

[29] Kuba K, Imai Y, Rao S, Gao H, Guo F, Guan B, et al. A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus-induced lung injury. Nat Med 2005;11(8):875‒9. 链接1

[30] Wrapp D, Wang N, Corbett KS, Goldsmith JA, Hsieh CL, Abiona O, et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science 2020;367(6483):1260‒3. 链接1

[31] Mohd HA, Memish ZA, Alfaraj SH, McClish D, Altuwaijri T, Alanazi MS, et al. Predictors of MERS-CoV infection: a large case control study of patients presenting with ILI at a MERS-CoV referral hospital in Saudi Arabia. Travel Med Infect Dis 2016;14(5):464‒70. 链接1

[32] Liu Q, Wang RS, Qu GQ, Wang YY, Liu P, Zhu YZ, et al. Gross examination report of a COVID-19 death autopsy. J Forensic Med 2020;36(1):21‒3. Chinese.

[33] Tian S, Xiong Y, Liu H, Niu Li, Guo J, Liao M, et al. Pathological study of the 2019 novel coronavirus disease (COVID-19) through postmortem core biopsies. Mod Pathol 2020;33(6):1007‒14. 链接1

[34] Gong S. Changes of the temporal-spatial distribution of epidemic disasters in 770BC-AD1911 China. Acta Geogr Sin 2003;58(6):870‒8.

[35] Chen S, Zhou Z. On the strategy and therapy of TCM diagnosis and treatment to COVID-19. Jiangsu J Tradit Chin Med 2020;52(4):34‒8. Chinese.

[36] Zheng W, Zhang J, Yang FW, Huang M, Miao Q, Qi WS, et al. Treatment of coronavirus disease 2019 (COVID-19) from perspective of dampness-toxicity plagues. J Tradit Chin Med 2020;61(22):1020‒8.

[37] Rodríguez-Morales AJ, MacGregor K, Kanagarajah S, Patel D, Schlagenhauf P. Going global—travel and the 2019 novel coronavirus. Travel Med Infect Dis 2020;33:101578. 链接1

[38] Wang H, Song HX, Wang DF, Ma XR, Zou DX, Miao JX, et al. Potential mechanism of Xuanfei Baidu formula in treating new coronavirus pneumonia on network pharmacology and molecular docking. J Hainan Med Coll 2020;26(18):1361‒72.

[39] Wang Y, Li X, Zhang JH, Xue R, Qian JY, Zhang XH, et al. Mechanism of Xuanfei Baidu tang in treatment of COVID-19 based on network pharmacology. China J Clin Mater Med 2020;45(10):2249‒56. Chinese.

[40] Pan HD, Yao XJ, Wang WY, Lau HY, Liu L. Network pharmacological approach for elucidating the mechanisms of traditional Chinese medicine in treating COVID-19 patients. Pharmacol Res 2020;159:105043. 链接1

[41] Zhu YW, Yan XF, Ye TJ, Hu J, Wang XL, Qiu FJ, et al. Analyzing the potential therapeutic mechanism of Huashi Baidu decoction on severe COVID-19 through integrating network pharmacological methods. J Tradit Complement Med 2021;11(2):180‒7. 链接1

[42] Tao Q, Du J, Li X, Zeng J, Tan B, Xu J, et al. Network pharmacology and molecular docking analysis on molecular targets and mechanisms of Huashi Baidu formula in the treatment of COVID-19. Drug Dev Ind Pharm 2020;46(8):1345‒53. 链接1

[43] Ren Y, Yin ZH, Dai JX, Yang Z, Ye BB, Ma YS, et al. Evidence-based complementary and alternative medicine exploring active components and mechanism of Jinhua Qinggan granules in treatment of COVID-19 based on virus‒host interaction. Nat Prod Commun 2020;15(9):1934578X2094721. 链接1

[44] Zhang Y, Yao Y, Yang Y, Wu H. Investigation of anti-SARS, MERS, and COVID-19 effect of Jinhua Qinggan granules based on a network pharmacology and molecular docking approach. Nat Prod Commun 2021;16(5):1934578X2110206. 链接1

[45] Drexler JF, Gloza-Rausch F, Glende J, Corman VM, Muth D, Goettsche M, et al. Genomic characterization of severe acute respiratory syndrome-related coronavirus in European bats and classification of coronaviruses based on partial RNA-dependent RNA polymerase gene sequences. J Virol 2010;84(21):11336‒49. 链接1

[46] Khaerunnisa S, Aminah NS, Kristanti AN, Kuswarini S, Wungu CDK, Soetjipto S, et al. Isolation and identification of a flavonoid compound and in vivo lipid-lowering properties of Imperata cylindrica. Biomed Rep 2020;13(5):38. 链接1

[47] Enmozhi SK, Raja K, Sebastine I, Joseph J. Andrographolide as a potential inhibitor of SARS-CoV-2 main protease: an in silico approach. J Biomol Struct Dyn 2021;39(9):3092‒8.

[48] Zahedipour F, Hosseini SA, Sathyapalan T, Majeed M, Jamialahmadi T, Al-Rasadi K, et al. Potential effects of curcumin in the treatment of COVID-19 infection. Phytother Res 2020;34(11):2911‒20. 链接1

[49] Du A, Zheng R, Disoma C, Li S, Chen Z, Li S, et al. Epigallocatechin-3-gallate, an active ingredient of traditional Chinese medicines, inhibits the 3CLpro activity of SARS-CoV-2. Int J Biol Macromol 2021;176:1‒12. 链接1

[50] Yu R, Chen L, Lan R, Shen R, Li P. Computational screening of antagonists against the SARS-CoV-2 (COVID-19) coronavirus by molecular docking. Int J Antimicrob Agents 2020;56(2):106012. 链接1

[51] Aanouz I, Belhassan A, El-Khatabi K, Lakhlifi T, El-ldrissi M, Bouachrine M. Moroccan Medicinal plants as inhibitors against SARS-CoV-2 main protease: computational investigations. J Biomol Struct Dyn 2021;39(8):2971‒9. 链接1

[52] Wei TZ, Wang H, Wu XQ, Lu Y, Guan SH, Dong FQ, et al. In silico screening of potential spike glycoprotein inhibitors of SARS-CoV-2 with drug repurposing strategy. Chin J Integr Med 2020;26(9):663‒9. 链接1

[53] Nebigil CG, Moog C, Vagner S, Benkirane-Jessel N, Smith DR, Désaubry L. Flavaglines as natural products targeting eIF4A and prohibitins: from traditional Chinese medicine to antiviral activity against coronaviruses. Eur J Med Chem 2020;203:112653. 链接1

[54] Ting D, Dong N, Fang L, Lu J, Bi J, Xiao S, et al. Multisite inhibitors for enteric coronavirus: antiviral cationic carbon dots based on curcumin. ACS Appl Nano Mater 2018;1(10):5451‒9. 链接1

[55] Wen CC, Kuo YH, Jan JT, Liang PH, Wang SY, Liu HG, et al. Specific plant terpenoids and lignoids possess potent antiviral activities against severe acute respiratory syndrome coronavirus. J Med Chem 2007;50(17):4087‒95. 链接1

[56] Cheng PW, Ng LT, Chiang LC, Lin CC. Antiviral effects of saikosaponins on human coronavirus 229E in vitro. Clin Exp Pharmacol Physiol 2006;33(7):612‒6. 链接1

[57] Chikhale R, Sinha SK, Wanjari M, Gurav NS, Ayyanar M, Prasad S, et al. Computational assessment of saikosaponins as adjuvant treatment for COVID-19: molecular docking, dynamics, and network pharmacology analysis. Mol Divers 2021;25(3):1889‒904. 链接1

[58] Ho T, Wu S, Chen J, Li C, Hsiang C. Emodin blocks the SARS coronavirus spike protein and angiotensin-converting enzyme 2 interaction. Antiviral Res 2007;74(2):92‒101. 链接1

[59] Ulasli M, Gurses SA, Bayraktar R, Yumrutas O, Oztuzcu S, Igci M, et al. The effects of Nigella sativa (Ns), Anthemis hyalina (Ah) and Citrus sinensis (Cs) extracts on the replication of coronavirus and the expression of TRP genes family. Mol Biol Rep 2014;41(3):1703‒11. 链接1

[60] Kim HY, Shin HS, Park H, Kim YC, Yun YG, Park S, et al. In vitro inhibition of coronavirus replications by the traditionally used medicinal herbal extracts, Cimicifuga rhizoma, Meliae cortex, Coptidis rhizoma, and Phellodendron cortex. J Clin Virol 2008;41(2):122‒8. 链接1

[61] Cui C, Huang C, Zhou W, Ji X, Zhang F, Wang L, et al. AGTR2, one possible novel key gene for the entry of SARS-CoV-2 into human cells. IEEE/ACM Trans Comput Biol Bioinform 2021;18(4):1230‒3. 链接1

[62] Gao K, Song YP, Song A. Exploring active ingredients and function mechanisms of Ephedra-bitter almond for prevention and treatment of corona virus disease 2019 (COVID-19) based on network pharmacology. BioData Min 2020;13(1):19. 链接1

[63] Lv Y, Wang S, Liang P, Wang Y, Zhang X, Jia Q, et al. Screening and evaluation of anti-SARS-CoV-2 components from Ephedra sinica by ACE2/CMC-HPLC-IT-TOF-MS approach. Anal Bioanal Chem 2021;413(11):2995‍‒3004. 链接1

[64] Li X, Qiu Q, Li M, Lin H, Cao S, Wang Q, et al. Chemical composition and pharmacological mechanism of Ephedra‍‒‍Glycyrrhiza drug pair against coronavirus disease 2019 (COVID-19). Aging 2021;13(4):4811‒30. 链接1

[65] Cai Y, Zeng M, Chen YZ. The pharmacological mechanism of Huashi Baidu formula for the treatment of COVID-19 by combined network pharmacology and molecular docking. Ann Palliat Med 2021;10(4):3864‒95. 链接1

[66] Zhou YY, Gao WY, Gu XR, Chen ZQ, Zhao HY, Bian BL, et al. Identification and attribution of chemical constituents of Qingfei Paidu decoction based on UHPLC-LTQ-Orbitrap-MS technology. China J Clin Mater Med 2020;45(13):3035‒44. Chinese.

[67] Liu W, Ge GB, Wang YL, Huang K, Chen JM, Wang CH, et al. Chemical constituent and tissue distribution study of Qingfei Paidu decoction in mice using UHPLC-Q-Orbitrap HRMS. Chin Tradit Herbal Drugs 2020;51(8):2035‒45. Chinese.

[68] Chen J, Wang YK, Gao Y, Hu LS, Yang JW, Wang JR, et al. Protection against COVID-19 injury by Qingfei Paidu decoction via anti-viral, anti-inflammatory activity and metabolic programming. Biomed Pharmacother 2020;129:110281. 链接1

[69] Zhao J, Tian S, Lu D, Yang J, Zeng H, Zhang F, et al. Systems pharmacological study illustrates the immune regulation, anti-infection, anti-inflammation, and multi-organ protection mechanism of Qing-Fei-Pai-Du decoction in the treatment of COVID-19. Phytomedicine 2021;85:153315. 链接1

[70] Shi N, Liu B, Liang N, Ma Y, Ge Y, Yi H, et al. Association between early treatment with Qingfei Paidu decoction and favorable clinical outcomes in patients with COVID-19: a retrospective multicenter cohort study. Pharmacol Res 2020;161:105290.

[71] Zhang ZJ, Wu WY, Hou JJ, Zhang LL, Li FF, Gao L, et al. Active constituents and mechanisms of Respiratory Detox Shot, a traditional Chinese medicine prescription, for COVID-19 control and prevention: network-molecular docking-LC-MSE analysis. J Integr Med 2020;18(3):229‒41. 链接1

[72] Li Q, Bai C, Yang R, Xing W, Pang X, Wu S, et al. Deciphering the pharmacological mechanisms of Ma Xing Shi Gan decoction against COVID-19 through integrating network pharmacology and experimental exploration. Front Pharmacol 2020;11:581691. 链接1

[73] Li Y, Chu F, Li P, Johnson N, Li T, Wang Y, et al. Potential effect of Maxing Shigan decoction against coronavirus disease 2019 (COVID-19) revealed by network pharmacology and experimental verification. J Ethnopharmacol 2021;271:113854. 链接1

[74] Ding Y, Zeng L, Li R, Chen Q, Zhou B, Chen Q, et al. The Chinese prescription Lianhuaqingwen capsule exerts anti-influenza activity through the inhibition of viral propagation and impacts immune function. BMC Complement Altern Med 2017;17(1):130. 链接1

[75] Zheng S, Baak JP, Li S, Xiao W, Ren H, Yang H, et al. Network pharmacology analysis of the therapeutic mechanisms of the traditional Chinese herbal formula Lian Hua Qing Wen in corona virus disease 2019 (COVID-19), gives fundamental support to the clinical use of LHQW. Phytomedicine 2020;79:153336. 链接1

[76] Chen X, Wu Y, Chen C, Gu Y, Zhu C, Wang S, et al. Identifying potential anti-COVID-19 pharmacological components of traditional Chinese medicine Lianhuaqingwen capsule based on human exposure and ACE2 biochromatography screening. Acta Pharm Sin B 2021;11(1):222‒36. 链接1

[77] Li R, Hou Y, Huang J, Pan W, Ma Q, Shi Y, et al. Lianhuaqingwen exerts antiviral and anti-inflammatory activity against novel coronavirus (SARS-CoV-2). Pharmacol Res 2020;156:104761. 链接1

[78] Ma Q, Pan W, Li R, Liu B, Li C, Xie Y, et al. Liu Shen capsule shows antiviral and anti-inflammatory abilities against novel coronavirus SARS-CoV-2 via suppression of NF-κB signaling pathway. Pharmacol Res 2020;158:104850. 链接1

[79] Pang WT, Jin XY, Pang B, Yang FW, Wang H, Liu CX, et al. Analysis on pattern of prescriptions and syndromes of traditional Chinese medicine for prevention and treatment of COVID-19. China J Clin Mater Med 2020;45(6):1242‒7. Chinese.

[80] Li X, Lin H, Wang Q, Cui L, Luo H, Luo L. Chemical composition and pharmacological mechanism of Shenfu decoction in the treatment of novel coronavirus pneumonia (COVID-19). Drug Dev Ind Pharm 2020;46(12):1947‒59. 链接1

[81] Deng W, Xu Y, Kong Q, Xue J, Yu P, Liu J, et al. Therapeutic efficacy of Pudilan Xiaoyan oral liquid (PDL) for COVID-19 in vitro and in vivo. Signal Transduct Target Ther 2020;5(1):66. 链接1

[82] Zheng Y, Liu Z, Zhu XQ, Wang BL. To Investigation of the mechanism of Xuebijing injection in COVID-19 treatment based on network pharmacology and molecular docking. Chin J Comp Med 2020;30(7):57‒64. Chinese.

[83] Thompson DA, Cormier EG, Dragic T. CCR5 and CXCR4 usage by non-clade B human immunodeficiency virus type 1 primary isolates. J Virol 2002;76(6):3059‒64. 链接1

[84] Lindahl JF, Grace D. The consequences of human actions on risks for infectious diseases: a review. Infect Ecol Epidemiol 2015;5(1):30048. 链接1

[85] Moscona A. Entry of parainfluenza virus into cells as a target for interrupting childhood respiratory disease. J Clin Invest 2005;115(7):1688‒98. 链接1

[86] Zhao J, Wohlford-Lenane C, Zhao J, Fleming E, Lane TE, McCray Jr PB, et al. Intranasal treatment with poly(I·C) protects aged mice from lethal respiratory virus infections. J Virol 2012;86(21):11416‒24. 链接1

[87] Kumaki Y, Salazar AM, Wandersee MK, Barnard DL. Prophylactic and therapeutic intranasal administration with an immunomodulator, Hiltonol® (Poly IC:LC), in a lethal SARS-CoV-infected BALB/c mouse model. Antiviral Res 2017;139:1‒12. 链接1

[88] Jasso-Miranda C, Herrera-Camacho I, Flores-Mendoza LK, Dominguez F, Vallejo-Ruiz V, Sanchez-Burgos GG, et al. Antiviral and immunomodulatory effects of polyphenols on macrophages infected with dengue virus serotypes 2 and 3 enhanced or not with antibodies. Infect Drug Resist 2019;12:1833‒52. 链接1

[89] Mounce BC, Cesaro T, Carrau L, Vallet T, Vignuzzi M. Curcumin inhibits Zika and chikungunya virus infection by inhibiting cell binding. Antiviral Res 2017;142:148‒57. 链接1

[90] Sordillo PP, Helson L. Curcumin suppression of cytokine release and cytokine storm. A potential therapy for patients with Ebola and other severe viral infections. In Vivo 2015;29(1):1‒4.

[91] Wang YX, Ma JR, Wang SQ, Zeng YQ, Zhou CY, Ru YH, et al. Utilizing integrating network pharmacological approaches to investigate the potential mechanism of Ma Xing Shi Gan decoction in treating COVID-19. Eur Rev Med Pharmacol Sci 2020;24(6):3360‒84.

[92] Zhao J, Yang X, Wang C, Song S, Cao K, Wei T, et al. Yidu-toxicity blocking lung decoction ameliorates inflammation in severe pneumonia of SARS-CoV-2 patients with Yidu-toxicity blocking lung syndrome by eliminating IL-6 and TNF-a. Biomed Pharmacother 2020;129:110436. 链接1

[93] Kao SJ, Su CF, Liu DD, Chen HI. Endotoxin-induced acute lung injury and organ dysfunction are attenuated by pentobarbital anaesthesia. Clin Exp Pharmacol Physiol 2007;34(5‒6):480‒7.

[94] Johnson ER, Matthay MA. Acute lung injury: epidemiology, pathogenesis, and treatment. J Aerosol Med Pulm Drug Deliv 2010;23(4):243‒52. 链接1

[95] Standiford TJ, Ward PA. Therapeutic targeting of acute lung injury and acute respiratory distress syndrome. Transl Res 2016;167(1):183‒91. 链接1

[96] Weng TI, Wu HY, Kuo CW, Liu SH. Honokiol rescues sepsis-associated acute lung injury and lethality via the inhibition of oxidative stress and inflammation. Intensive Care Med 2011;37(3):533‒41. 链接1

[97] Shin NR, Shin IS, Song HH, Hong JM, Kwon OK, Jeon CM, et al. Callicarpa japonica Thunb. reduces inflammatory responses: a mouse model of lipopolysaccharide-induced acute lung injury. Int Immunopharmacol 2015;26(1):174‒80. 链接1

[98] Koksel O, Ozdulger A, Tamer L, Cinel L, Ercil M, Degirmenci U, et al. Effects of caffeic acid phenethyl ester on lipopolysaccharide-induced lung injury in rats. Pulm Pharmacol Ther 2006;19(2):90‒5. 链接1

[99] Yang W, Qiang D, Zhang M, Ma L, Zhang Y, Qing C, et al. Isoforskolin pretreatment attenuates lipopolysaccharide-induced acute lung injury in animal models. Int Immunopharmacol 2011;11(6):683‒92. 链接1

[100] Sun Q, Chen L, Gao M, Jiang W, Shao F, Li J, et al. Ruscogenin inhibits lipopolysaccharide-induced acute lung injury in mice: involvement of tissue factor, inducible NO synthase and nuclear factor (NF)‍-‍κB. Int Immunopharmacol 2012;12(1):88‒93. 链接1

[101] Patel VJ, Biswas Roy S, Mehta HJ, Joo M, Sadikot RT. Alternative and natural therapies for acute lung injury and acute respiratory distress syndrome. BioMed Res Int 2018;2018:1‒9. 链接1

[102] Cui Y, Xin H, Tao Y, Mei L, Wang Z. Arenaria kansuensis attenuates pulmonary fibrosis in mice via the activation of Nrf2 pathway and the inhibition of NF-κB/TGF-β1/Smad2/3 pathway. Phytother Res 2021;35(2):974‒86. 链接1

[103] Liu Z, Wang P, Lu S, Guo R, Gao W, Tong H, et al. Liquiritin, a novel inhibitor of TRPV1 and TRPA1, protects against LPS-induced acute lung injury. Cell Calcium 2020;88:102198. 链接1

[104] Li X, Shan C, Wu Z, Yu H, Yang A, Tan B. Emodin alleviated pulmonary inflammation in rats with LPS-induced acute lung injury through inhibiting the mTOR/HIF-1α/VEGF signaling pathway. Inflamm Res 2020;69(4):365‒73. 链接1

[105] Gao Z, Sui J, Fan R, Qu W, Dong X, Sun D. Emodin protects against acute pancreatitis-associated lung injury by inhibiting NLPR3 inflammasome activation via Nrf2/HO-1 signaling. Drug Des Devel Ther 2020;14:1971‒82. 链接1

[106] Yin JT, Wan B, Liu DD, Wan SX, Fu HY, Wan Y, et al. Emodin alleviates lung injury in rats with sepsis. J Surg Res 2016;202(2):308‒14. 链接1

[107] Tsai CL, Lin YC, Wang HM, Chou TC. Baicalein, an active component of Scutellaria baicalensis, protects against lipopolysaccharide-induced acute lung injury in rats. J Ethnopharmacol 2014;153(1):197‒206. 链接1

[108] Chen YQ, Chai YS, Xie K, Yu F, Wang CJ, Lin SH, et al. Curcumin promotes the expression of IL-35 by regulating regulatory T cell differentiation and restrains uncontrolled inflammation and lung injury in mice. Inflammation 2020;43(5):1913‒24. 链接1

[109] Liu Q, Ci X, Wen Z, Peng L. Diosmetin alleviates lipopolysaccharide-induced acute lung injury through activating the Nrf2 pathway and inhibiting the NLRP3 inflammasome. Biomol Ther 2018;26(2):157‒66. 链接1

[110] Wang YM, Ji R, Chen WW, Huang SW, Zheng YJ, Yang ZT, et al. Paclitaxel alleviated sepsis-induced acute lung injury by activating MUC1 and suppressing TLR-4/NF-κB pathway. Drug Des Devel Ther 2019;13:3391‒404. 链接1

[111] Zhou BX, Li J, Liang XL, Pan XP, Hao YB, Xie PF, et al. β‍-sitosterol ameliorates influenza A virus-induced proinflammatory response and acute lung injury in mice by disrupting the cross-talk between RIG-I and IFN/STAT signaling. Acta Pharmacol Sin 2020;41(9):1178‒96. 链接1

[112] Zhang Y, Zhang B, Xu DQ, Li WP, Xu M, Li JH, et al. Tanshinone IIA attenuates seawater aspiration-induced lung injury by inhibiting macrophage migration inhibitory factor. Biol Pharm Bull 2011;34(7):1052‒7. 链接1

[113] Fu S, Lu W, Yu W, Hu J. Protective effect of Cordyceps sinensis extract on lipopolysaccharide-induced acute lung injury in mice. Biosci Rep 2019;39(6):BSR20190789. 链接1

[114] Chen X, Han W, Wang G, Zhao X. Application prospect of polysaccharides in the development of anti-novel coronavirus drugs and vaccines. Int J Biol Macromol 2020;164:331‒43. 链接1

[115] Chen RR, Li YJ, Chen JJ, Lu CL. A review for natural polysaccharides with anti-pulmonary fibrosis properties, which may benefit to patients infected by 2019-nCoV. Carbohydr Polym 2020;247:116740. 链接1

相关研究