期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2023年 第22卷 第3期 doi: 10.1016/j.eng.2021.08.022

基于边缘计算的软件定义云制造和柔性资源调度研究

a School of Cyberspace Science and Technology, Beijing Institute of Technology, Beijing 100191, China
b School of Computer Science and Technology, Beijing Institute of Technology, Beijing 100191, China
c College of Mathematics and Computer Science, Yan’an University, Yan’an 716000, China
d School of Economics and Management, University of Chinese Academy of Science, Beijing 100190, China
e Department of Production Engineering, KTH Royal Institute of Technology, Stockholm 10044, Sweden
f State Key Lab of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
g Department of Industrial and Manufacturing Systems Engineering, The University of Hong Kong, Hong Kong 999077, China

收稿日期: 2020-12-17 修回日期: 2021-08-12 录用日期: 2021-08-12 发布日期: 2021-11-25

下一篇 上一篇

摘要

本文研究的重点是在云制造环境中实现快速重构、实现灵活的资源调度、开发资源潜力以应对各种变化。因此,本文首先提出了一种新的基于云和软件定义网络(SDN)的制造模型——软件定义云制造(SDCM),该模型将控制逻辑从自动化硬件转移到软件上。这种转变意义重大,因为软件可以充当制造系统的“大脑”,并且可以轻松更改或更新以支持快速系统重新配置、运营和演进。随后,边缘计算被引入,以接近终端的计算和存储能力来补充云。另一个关键问题是管理由不同服务质量(QoS)要求的大量物联网(IoT)数据传输而导致的严重网络拥塞。基于SDCM的虚拟化和灵活的网络能力,本研究形式化了面向复杂制造任务集的时间敏感性数据流量控制问题,并考虑了子任务分配和数据路由路径选择。为了解决这一优化问题,提出了一种将遗传算法(GA)、Dijkstra 最短路径算法和排队算法相结合的方法。实验结果表明,该方法能有效地防止网络拥塞,减少SDCM中的总通信延迟。

 

补充材料

图片

图1

图2

图3

图4

图5

图6

图7

图8

参考文献

[ 1 ] Yang C, Shen W, Wang X. The Internet of Things in manufacturing: key issues and potential applications. IEEE Syst Man Cybern Mag 2018;4(1):6‒15. 链接1

[ 2 ] Hao Y, Jiang Y, Chen T, Cao D, Chen M. iTaskOffloading: intelligent task offloading for a cloud‒edge collaborative system. IEEE Netw 2019;33(5):82‒8. 链接1

[ 3 ] Yang C, Lan S, Shen W, Wang L, Huang GQ. Software-defined cloud manufacturing with edge computing for Industry 4.0. Proceedings of 16th International Wireless Communications and Mobile Computing; 2020 Jun 15‒19; Limassol, Cyprus. New York City: IEEE; 2020. 链接1

[ 4 ] Bonomi F, Milito R, Zhu J, Addepalli S. Fog computing and its role in the Internet of Things. In: Proceedings of The First Edition of the MCC Workshop on Mobile Cloud Computing; 2012 Aug 17; Helsinki, Finland. New York City: ACM; 2012. p. 13‒6. 链接1

[ 5 ] Yang C, Lan S, Wang L, Shen W, Huang GQ. Big data driven edge‒cloud collaboration architecture for cloud manufacturing: a software defined perspective. IEEE Access 2020;8:45938‒50. 链接1

[ 6 ] Kagermann H, Wahlster W, Helbig J. Recommendations for implementing the strategic initiative Industrie 4.0—final report of the Industrie 4.0 working group. Report. Berlin: Forschungsunion; 2013 Apr.

[ 7 ] Yang C, Lan S, Shen W, Huang GQ, Wang X, Lin T. Towards product customization and personalization in IoT-enabled cloud manufacturing. Cluster Comput 2017;20(2):1717‒30. 链接1

[ 8 ] Saxena LK, Jain PK. An integrated model of dynamic cellular manufacturing and supply chain system design. Int J Adv Manuf Technol 2012;62:385‒404. 链接1

[ 9 ] Yang C, Shen W, Lin T, Wang X. IoT-enabled dynamic service selection across multiple manufacturing clouds. Manuf Lett 2016;7:22‒5. 链接1

[10] Meng Z, Wu Z, Gray J. Architecting ubiquitous communication and collaborative-automation-based machine network systems for flexible manufacturing. IEEE Syst J 2020;14(1):113‒23. 链接1

[11] McKeown N. Software-defined networking. Infocom Keynote Talk 2009;17(2):30‒2.

[12] Li B, Zhang L, Wang S, Tao F, Cao J, Jiang X, et al. Cloud manufacturing: a new service-oriented networked manufacturing model. Comput Integr Manuf Syst 2010;16(1):1‒7. Chinese.

[13] Ren L, Zhang L, Wang L, Tao F, Chai X. Cloud manufacturing: key characteristics and applications. Int J Comput Integ M 2017;30(6):501‒15. 链接1

[14] Simeone A, Zeng Y, Caggiano A. Intelligent decision-making support system for manufacturing solution recommendation in a cloud framework. Int J Adv Manuf Technol 2021;112:1035‒50. 链接1

[15] Mourtzis D, Vlachou E, Milas N, Tapoglou N, Mehnen J. A cloud-based, knowledge-enriched framework for increasing machining efficiency based on machine tool monitoring. Proc IMechePart Eng BJ Eng Manuf 2019;233(1):278‒92. 链接1

[16] Liu Y, Zhang L, Wang L, Xiao Y, Xu X, Wang MA, et al. A framework for scheduling in cloud manufacturing with deep reinforcement learning. Proceedings of 2019 IEEE 17th International Conference on Industrial Informatics; 2019 Jul 22‒25; Helsinki, Finland. New York City: IEEE; 2019. 链接1

[17] Queiroz J, Leitão P, Barbosa J, Oliveira E, Garcia G. An agent-based industrial cyber‒physical system deployed in an automobile multi-stage production system. In: Borangiu T, Trentesaux D, Leitão P, Giret BA, editors. Service oriented, holonic and multi-agent manufacturing systems for industry of the future. Switzerland: Springer Cham; 2019. p. 379‒91. 链接1

[18] Liao H, Zhou Z, Zhao X, Zhang L, Mumtaz S, Jolfaei A, et al. Learning-based context-aware resource allocation for edge-computing-empowered Industrial IoT. IEEE Internet Things J 2020;7(5):4260‒77. 链接1

[19] He X, Tu Z, Xu X, Wang Z. Programming framework and infrastructure for self-adaptation and optimized evolution method for microservice systems in cloud-edge environments. Future Gener Comp Syst 2021;118:263‒81. 链接1

[20] Ren L, Meng Z, Wang X, Zhang L, Yang LT. A data-driven approach of product quality prediction for complex production systems. IEEE Trans Ind Inform 2021;17(9):6457‒65. 链接1

[21] Caggiano A. Cloud‒based manufacturing process monitoring for smart diagnosis services. Int J Comput Integ Manuf 2018;31(7):612‒23. 链接1

[22] Ren L, Meng Z, Wang X, Lu R, Yang LT. A wide‒deep-sequence model based quality prediction method in industrial process analysis. IEEE Trans Neur Net Lear 2020;31(9):3721‒31. 链接1

[23] Ren L, Liu Y, Wang X, Lu J, Deen MJ. Cloud‒edge based lightweight temporal convolutional networks for remaining useful life prediction in IIoT. IEEE Internet Things J 2021;8(16):12578‒87. 链接1

[24] Ren L, Laili Y, Li X, Wang X. Coding-based large-scale task assignment for industrial edge intelligence. IEEE Trans Netw Sci Eng 2020;7(4):2286‒97. 链接1

[25] Kreutz D, Ramos FMV, Esteves Verissimo P, Esteve Rothenberg C, Azodolmolky S, Uhlig S. Software-defined networking: a comprehensive survey. Proc IEEE 2015;103(1):14‒76. 链接1

[26] Hu PA. A system architecture for software-defined industrial Internet of Things. Proceedings of 2015 IEEE International Conference on Ubiquitous Wireless Broadband; 2015 Oct 4‒7; Montreal, QC, Canada. New York City: IEEE; 2015. 链接1

[27] Salahuddin MA, Al-Fuqaha A, Guizani M. Software-defined networking for RSU clouds in support of the Internet of Vehicles. IEEE Internet Things 2015;2(2):133‒44. 链接1

[28] Naeem F, Srivastava G, Tariq M. A software defined network based fuzzy normalized neural adaptive multipath congestion control for Internet of Things. IEEE Trans Netw Sci Eng 2020;7(4):2155‒64. 链接1

[29] Brody P, Pureswaran V. The new software-defined supply chain: preparing for the disruptive transformation of electronics design and manufacturing. Report. IBM Institute Business Value; 2013. Chinese.

[30] Islam K, Shen W, Wang X. Wireless sensor network reliability and security in factory automation: a survey. IEEE Trans Syst Man Cybern Part C Appl Rev 2012;42(6):1243‒56. 链接1

[31] Gu B, Zhou Z, Mumtaz S, Frascolla V, Bashir AK. Context-aware task offloading for multi-access edge computing: matching with externalities. Proceedings of 2018 IEEE Global Communications Conference; 2018 Dec 9‒13; Abu Dhabi, United Arab Emirates. New York City: IEEE; 2018. 链接1

[32] Yang XS. Nature-inspired optimization algorithms. Elsevier; 2014. 链接1

相关研究