期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2022年 第11卷 第4期 doi: 10.1016/j.eng.2021.08.028

铋基亲钠框架互穿钠金属负极实现无枝晶/高倍率钠离子电池

a Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
b School of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing 312000, China
c Key Laboratory of Coal Science and Technology of Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan 030024, China
d Shanghai Electrochemical Energy Devices Research Center, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

收稿日期: 2021-01-26 修回日期: 2021-08-11 录用日期: 2021-08-31 发布日期: 2022-01-25

下一篇 上一篇

摘要

具有高体积能量密度的钠(Na)金属电池非常需要能够在高倍率下运行的性能。然而在大倍率下,钠离子块体金属负极中不均匀且大量的迁移会导致金属的局部沉积/溶解,带来严重的枝晶生长和松散堆叠的问题。在本工作中,我们设计了具有亲钠性质的铋化钠/钠互穿金属负极(Na/Na3Bi)。与块体钠相比,这种互穿负极提供了强烈的Na+吸附能力和低的离子扩散势垒,确保了Na+的均匀成核和快速迁移,从而实现在高电流密度下的均匀沉积和溶解。此外,亲钠性的铋基材料能够保证金属钠沉积在框架的内部,实现金属的致密沉积,有利于提高体积容量。Na/Na3Bi 金属负极能够同时承受高电流密度(5 mA∙cm−2)和高循环容量(5 mA∙h∙cm−2),并且可以在2 mA∙cm−2的电流密度下长期(长达2800 h)稳定循环。

图片

图1

图2

图3

图4

图5

图6

参考文献

[ 1 ] Armand M, Tarascon JM. Building better batteries. Nature 2008;451 (7179):652–7. 链接1

[ 2 ] Whittingham MS. Lithium batteries and cathode materials. Chem Rev 2004;104(10):4271–302. 链接1

[ 3 ] Bruce PG, Freunberger SA, Hardwick LJ, Tarascon JM. Li–O2 and Li–S batteries with high energy storage. Nat Mater 2012;11(1):19–29. Erratum in: Nat Mater 2012;11(2):172. 链接1

[ 4 ] Xu T, Gao P, Li P, Xia K, Han N, Deng J, et al. Fast-charging and ultrahighcapacity lithium metal anode enabled by surface alloying. Adv Energy Mater 2020;10(8):1902343. 链接1

[ 5 ] Albertus P, Babinec S, Litzelman S, Newman A. Status and challenges in enabling the lithium metal electrode for high-energy and low-cost rechargeable batteries. Nat Energy 2018;3(1):16–21. 链接1

[ 6 ] Wu Y, Wang W, Ming J, Li M, Xie L, He X, et al. An exploration of new energy storage system: high energy density, high safety, and fast charging lithium ion battery. Adv Funct Mater 2019;29(1):1805978. 链接1

[ 7 ] Aurbach D, Levi MD, Levi E, Schechter A. Failure and stabilization mechanisms of graphite electrodes. J Phys Chem B 1997;101(12):2195–206. 链接1

[ 8 ] Zhang Y, Li J, Zhao W, Dou H, Zhao X, Liu Y, et al. Defect-free metal–organic framework membrane for precise ion/solvent separation toward highly stable magnesium metal anode. Adv Mater. In press.

[ 9 ] Yao Z, Xia X, Xie D, Wang Y, Zhou C, Liu S, et al. Enhancing ultrafast lithium ion storage of Li4Ti5O12 by tailored TiC/C core/shell skeleton plus nitrogen doping. Adv Funct Mater 2018;28(31):1802756. 链接1

[10] Elango R, Demortière A, De Andrade V, Morcrette M, Seznec V. Thick binderfree electrodes for Li-ion battery fabricated using templating approach and spark plasma sintering reveals high areal capacity. Adv Energy Mater 2018;8 (15):1703031. 链接1

[11] Yang F, Mousavie SMA, Oh TK, Yang T, Lu Y, Farley C, et al. Sodium–sulfur flow battery for low-cost electrical storage. Adv Energy Mater 2018;8 (11):1701991. 链接1

[12] Liang F, Qiu X, Zhang Q, Kang Y, Koo A, Hayashi K, et al. A liquid anode for rechargeable sodium–air batteries with low voltage gap and high safety. Nano Energy 2018;49:574–9. 链接1

[13] Palomares V, Casas-Cabanas M, Castillo-Martínez E, Han MH, Rojo T. Update on Na-based battery materials. A growing research path. Energy Environ Sci 2013;6(8):2312–37. 链接1

[14] Komaba S, Murata W, Ishikawa T, Yabuuchi N, Ozeki T, Nakayama T, et al. Electrochemical Na insertion and solid electrolyte interphase for hard-carbon electrodes and application to Na-ion batteries. Adv Funct Mater 2011;21 (20):3859–67. 链接1

[15] Bai Y, Wang Z, Wu C, Xu R, Wu F, Liu Y, et al. Hard carbon originated from polyvinyl chloride nanofibers as high-performance anode material for Na-ion battery. ACS Appl Mater Interfaces 2015;7(9):5598–604. 链接1

[16] Liu P, Li Y, Hu YS, Li H, Chen L, Huang X. A waste biomass derived hard carbon as a high-performance anode material for sodium-ion batteries. J Phys Chem A 2016;4(34):13046–52. 链接1

[17] Yabuuchi N, Kubota K, Dahbi M, Komaba S. Research development on sodiumion batteries. Chem Rev 2014;114(23):11636–82. 链接1

[18] Sun J, Lee HW, Pasta M, Yuan H, Zheng G, Sun Y, et al. A phosphorene– graphene hybrid material as a high-capacity anode for sodium-ion batteries. Nat Nanotechnol 2015;10(11):980–5. 链接1

[19] Pan H, Hu YS, Chen L. Room-temperature stationary sodium-ion batteries for large-scale electric energy storage. Energy Environ Sci 2013;6 (8):2338–60. 链接1

[20] Hwang JY, Myung ST, Sun YK. Sodium-ion batteries: present and future. Chem Soc Rev 2017;46(12):3529–614. 链接1

[21] Li Y, Lu Y, Adelhelm P, Titirici MM, Hu YS. Intercalation chemistry of graphite: alkali metal ions and beyond. Chem Soc Rev 2019;48(17):4655–87. 链接1

[22] Wang A, Hu X, Tang H, Zhang C, Liu S, Yang YW, et al. Processable and moldable sodium–metal anodes. Angew Chem Int Ed 2017;56 (39):11921–6. 链接1

[23] Zhao Y, Goncharova LV, Lushington A, Sun Q, Yadegari H, Wang B, et al. Superior stable and long life sodium metal anodes achieved by atomic layer deposition. Adv Mater 2017;29(18):1606663. 链接1

[24] Wang H, Wang C, Matios E, Li W. Facile stabilization of the sodium metal anode with additives: unexpected key role of sodium polysulfide and adverse effect of sodium nitrate. Angew Chem Int Ed 2018;57(26):7734–7. 链接1

[25] Guo M, Dou H, Zhao W, Zhao X, Wan B, Wang J, et al. Three dimensional frameworks of super ionic conductor for thermodynamically and dynamically favorable sodium metal anode. Nano Energy 2020;70:104479. 链接1

[26] Xu Z, Yang J, Zhang T, Sun L, Nuli Y, Wang J, et al. Stable Na metal anode enabled by a reinforced multistructural SEI layer. Adv Funct Mater 2019;29 (27):1901924. 链接1

[27] Zhang D, Li B, Wang S, Yang S. Simultaneous formation of artificial SEI film and 3D host for stable metallic sodium anodes. ACS Appl Mater Interfaces 2017;9 (46):40265–72. 链接1

[28] Tang S, Qiu Z, Wang XY, Gu Y, Zhang XG, Wang WW, et al. A room-temperature sodium metal anode enabled by a sodiophilic layer. Nano Energy 2018;48:101–6. 链接1

[29] Luo J, Wang C, Wang H, Hu X, Matios E, Lu X, et al. Pillared mxene with ultralarge interlayer spacing as a stable matrix for high performance sodium metal anodes. Adv Funct Mater 2019;29(3):1805946. 链接1

[30] Yang T, Qian T, Sun Y, Zhong J, Rosei F, Yan C. Mega high utilization of sodium metal anodes enabled by single zinc atom sites. Nano Lett 2019;19 (11):7827–35. 链接1

[31] Fang Y, Zhang Y, Zhu K, Lian R, Gao Y, Yin J, et al. Lithiophilic three-dimensional porous Ti3C2Tx–rGO membrane as a stable scaffold for safe alkali metal (Li or Na) anodes. ACS Nano 2019;13(12):14319–28. 链接1

[32] Zhu M, Li S, Li B, Gong Y, Du Z, Yang S. Homogeneous guiding deposition of sodium through main group II metals toward dendrite-free sodium anodes. Sci Adv 2019;5(4):eaau6264. 链接1

[33] Xu Y, Wang C, Matios E, Luo J, Hu X, Yue Q, et al. Sodium deposition with a controlled location and orientation for dendrite-free sodium metal batteries. Adv Energy Mater 2020;10(44):2002308. 链接1

[34] Guo W, Liu S, Guan X, Zhang X, Liu X, Luo J. Mixed ion and electron-conducting scaffolds for high-rate lithium metal anodes. Adv Energy Mater 2019;9 (20):1900193. 链接1

[35] Jäckle M, Helmbrecht K, Smits M, Stottmeister D, Groß A. Self-diffusion barriers: possible descriptors for dendrite growth in batteries? Energy Environ Sci 2018;11(12):3400–7. 链接1

[36] Kasemchainan J, Zekoll S, Jolly DS, Ning Z, Hartley GO, Marrow J, et al. Critical stripping current leads to dendrite formation on plating in lithium anode solid electrolyte cells. Nat Mater 2019;18(10):1105–11. 链接1

[37] Shi F, Pei A, Boyle DT, Xie J, Yu X, Zhang X, et al. Lithium metal stripping beneath the solid electrolyte interphase. Proc Natl Acad Sci USA 2018;115 (34):8529–34. 链接1

[38] Jäckle M, Groß A. Microscopic properties of lithium, sodium, and magnesium battery anode materials related to possible dendrite growth. J Chem Phys 2014;141(17):174710. 链接1

[39] O’Reilly DE. Self-diffusion of solid and liquid sodium. J Phys Chem 1974;78 (22):2275–80. 链接1

[40] Park JH, Choi YS, Byeon YW, Ahn JP, Lee JC. Diffusion kinetics governing the diffusivity and diffusion anisotropy of alloying anodes in Na-ion batteries. Nano Energy 2019;65:104041. 链接1

[41] Yurkiv V, Gutiérrez-Kolar JS, Unocic RR, Ramsubramanian A, ShahbazianYassar R, Mashayek F. Competitive ion diffusion within grain boundary and grain interiors in polycrystalline electrodes with the inclusion of stress field. J Electrochem Soc 2017;164(12):A2830–9. 链接1

[42] Lin D, Zhao J, Sun J, Yao H, Liu Y, Yan K, et al. Three-dimensional stable lithium metal anode with nanoscale lithium islands embedded in ionically conductive solid matrix. Proc Natl Acad Sci USA 2017;114(18):4613–8. 链接1

[43] Zhang C, Liu S, Li G, Zhang C, Liu X, Luo J. Incorporating ionic paths into 3D conducting scaffolds for high volumetric and areal capacity, high rate lithium– metal anodes. Adv Mater 2018;30(33):1801328. 链接1

[44] Wan M, Kang S, Wang L, Lee HW, Zheng GW, Cui Y, et al. Mechanical rolling formation of interpenetrated lithium metal/lithium tin alloy foil for ultrahighrate battery anode. Nat Commun 2020;11(1):829. 链接1

[45] Zheng X, Yang W, Wang Z, Huang L, Geng S, Wen J, et al. Embedding a percolated dual-conductive skeleton with high sodiophilicity toward stable sodium metal anodes. Nano Energy 2020;69:104387. 链接1

[46] Liu S, Deng L, Guo W, Zhang C, Liu X, Luo J. Bulk nanostructured materials design for fracture-resistant lithium metal anodes. Adv Mater 2019;31 (15):1807585. 链接1

[47] Li S, Fu J, Miao G, Wang S, Zhao W, Wu Z, et al. Toward planar and dendrite-free Zn electrodepositions by regulating Sn-crystal textured surface. Adv Mater 2021;33(21):2008424. 链接1

[48] Lu H, Xu B, Shi J, Wu M, Hu Y, Ouyang C. Structural, electronic, sodium diffusion and elastic properties of Na–P alloy anode for Na-ion batteries: insight from first-principles calculations. Mod Phys Lett B 2016;30(32– 33):1650385. 链接1

[49] Han S, Park J, Lu W, Sastry AM. Numerical study of grain boundary effect on Li+ effective diffusivity and intercalation-induced stresses in Li-ion battery active materials. J Power Sources 2013;240:155–67. 链接1

[50] Wang C, Wang L, Li F, Cheng F, Chen J. Bulk bismuth as a high-capacity and ultralong cycle-life anode for sodium-ion batteries by coupling with glymebased electrolytes. Adv Mater 2017;29(35):1702212. 链接1

[51] Lei K, Wang C, Liu L, Luo Y, Mu C, Li F, et al. A porous network of bismuth used as the anode material for high-energy-density potassium-ion batteries. Angew Chem Int Ed 2018;57(17):4687–91. 链接1

[52] Yan K, Lu Z, Lee HW, Xiong F, Hsu PC, Li Y, et al. Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth. Nat Energy 2016;1(3):16010. 链接1

[53] Fan L, Li S, Liu L, Zhang W, Gao L, Fu Y, et al. Enabling stable lithium metal anode via 3D inorganic skeleton with superlithiophilic interphase. Adv Energy Mater 2018;8(33):1802350. 链接1

[54] Li Z, Wu HB, Lou XW. Rational designs and engineering of hollow micro-/nanostructures as sulfur hosts for advanced lithium–sulfur batteries. Energy Environ Sci 2016;9(10):3061–70. 链接1

[55] Xiao J, Li Q, Bi Y, Cai M, Dunn B, Glossmann T, et al. Understanding and applying coulombic efficiency in lithium metal batteries. Nat Energy 2020;5 (8):561–8. 链接1

[56] Peng Z, Song J, Huai L, Jia H, Xiao B, Zou L, et al. Enhanced stability of Li metal anodes by synergetic control of nucleation and the solid electrolyte interphase. Adv Energy Mater 2019;9(42):1901764. 链接1

[57] Seh ZW, Sun J, Sun Y, Cui Y. A highly reversible room-temperature sodium metal anode. ACS Cent Sci 2015;1(8):449–55. 链接1

[58] Xu K. Electrolytes and interphases in Li-ion batteries and beyond. Chem Rev 2014;114(23):11503–618. 链接1

[59] Chi SS, Qi XG, Hu YS, Fan LZ. 3D flexible carbon felt host for highly stable sodium metal anodes. Adv Energy Mater 2018;8(15):1702764. 链接1

相关研究