期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2022年 第16卷 第9期 doi: 10.1016/j.eng.2021.08.030

激光修复Inconel 718镍基高温合金过程中Laves相的原位调控新方法

a State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China
b Key Laboratory of Metal High Performance Additive Manufacturing and Innovative Design, Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi'an 710072, China

收稿日期: 2020-03-18 修回日期: 2021-05-28 录用日期: 2021-08-04

下一篇 上一篇

摘要

激光修复Inconel 718 高温合金通常由组织差异明显的基材区锻造组织和激光修复区熔覆组织两部分构成。其中,激光熔覆区内Laves 相的尺寸、形貌和分布对激光修复Inconel 718 高温合金的力学性能有重要影响。然而,考虑高温条件下基材区组织与性能的劣化,激光熔覆区内的Laves 相难以通过后热处理进行优化。基于此,本文提出了一种原位激光热处理(in situ laser heat-treatment, ISLHT)工艺,该方法可以通过激光加热先前的沉积层,在不影响基材区的基础上,基于优化的工艺参数,有效调控激光熔覆区内Laves 相的尺寸和形貌。本文采用热电偶和红外摄像机来监测和分析ISLHT过程中的热循环和实时温度分布,并通过光学显微镜、扫描电子显微镜、电子探针等观察分析微观组织结构和元素偏析。研究发现,ISLHT 工艺可以有效地改变Laves 相的形态和尺寸,使Laves 相从连续的大尺寸长条状转变为离散的细小颗粒状。其中,有效温度范围和持续时间是影响ISLHT过程中Laves 相演变的两个主要因素。有效温
度范围由激光线能量密度决定,峰值温度随线能量密度的增加而增加。此外,可以通过同时增加激光功率和扫描速度来降低温度幅度。最后,提出了基于ISLHT 工艺进行Laves 相调控的流程图,并实现了具有细小颗粒Laves相的单壁墙试样的沉积。

图片

图1

图2

图3

图4

图5

图6

图7

参考文献

[ 1 ] Tucho WM, Cuvillier P, Sjolyst-Kverneland A, Hansen V. Microstructure and hardness studies of Inconel 718 manufactured by selective laser melting before and after solution heat treatment. Mater Sci Eng A 2017;689:220‒32. 链接1

[ 2 ] Ruan JJ, Ueshima N, Oikawa K. Phase transformations and grain growth behaviors in superalloy 718. J Alloys Compd 2018;737:83‒91. 链接1

[ 3 ] Alam T, Chaturvedi M, Ringer SP, Cairney JM. Precipitation and clustering in the early stages of ageing in Inconel 718. Mater Sci Eng A 2010;527(29‒30):7770‒4.

[ 4 ] Guévenoux C, Hallais S, Balit Y, Charles A, Charkaluk E, Constantinescu A. Plastic strain localization induced by microstructural gradient in laser cladding repaired structures. Theor Appl Fract Mech 2020;107:102520. 链接1

[ 5 ] Sui S, Chen J, Ming X, Zhang S, Lin X, Huang W. The failure mechanism of 50% laser additive manufactured Inconel 718 and the deformation behavior of Laves phases during a tensile process. Int J Adv Manuf Technol 2017;91(5):2733‒40. 链接1

[ 6 ] Sui S, Chen J, Zhang R, Ming X, Liu F, Lin X. The tensile deformation behavior of laser repaired Inconel 718 with a non-uniform microstructure. Mater Sci Eng A 2017;688:480‒7. 链接1

[ 7 ] Sui S, Chen J, Ma L, Fan W, Tan H, Liu F, et al. Microstructures and stress rupture properties of pulse laser repaired Inconel 718 superalloy after different heat treatments. J Alloys Compd 2019;770:125‒35. 链接1

[ 8 ] Sui S, Tan H, Chen J, Zhong C, Li Z, Fan W, et al. The influence of Laves phases on the room temperature tensile properties of Inconel 718 fabricated by powder feeding laser additive manufacturing. Acta Mater 2019;164:413‒27. 链接1

[ 9 ] Zhang YC, Li ZG, Nie PL, Wu YX. Effect of ultrarapid cooling on microstructure of laser cladding IN718 coating. Surf Eng 2013;29(6):414‒8. 链接1

[10] Ma M, Wang Z, Zeng X. Effect of energy input on microstructural evolution of direct laser fabricated IN718 alloy. Mater Charact 2015;106:420‒7. 链接1

[11] Nie P, Ojo OA, Li Z. Numerical modeling of microstructure evolution during laser additive manufacturing of a nickel-based superalloy. Acta Mater 2014;77:85‒95. 链接1

[12] Long Y, Nie P, Li Z, Huang J, Li X, Xu X. Segregation of niobium in laser cladding Inconel 718 superalloy. Trans Nonferr Met Soc China 2016;26(2):431‒6. 链接1

[13] Sui S, Chen J, Li Z, Li H, Zhao X, Tan H. Investigation of dissolution behavior of Laves phase in Inconel 718 fabricated by laser directed energy deposition. Addit Manuf 2020;32:101055. 链接1

[14] Zhang Y, Li Z, Nie P, Wu Y. Effect of heat treatment on niobium segregation of laser-cladded IN718 alloy coating. Metall Mater Trans A 2012;44(2):708‒16. 链接1

[15] Janaki Ram GD, Venugopal Reddy A, Prasad Rao K, Reddy GM, Sarin Sundar JK. Microstructure and tensile properties of Inconel 718 pulsed Nd-YAG laser welds. J Mater Process Technol 2005;167(1):73‒82. 链接1

[16] Liu F, Lin X, Zhao W, Zhao X, Chen J, Huang W. Effects of solution treatment temperature on microstructures and properties of laser solid forming GH4169 superalloy. Rare Met Mater Eng 2010;39(9):1519‒24. 链接1

[17] Sohrabi MJ, Mirzadeh H. Revisiting the diffusion of niobium in an as-cast nickel-based superalloy during annealing at elevated temperatures. Met Mater Int 2020;26(3):326‒32. 链接1

[18] Pan X, Yu H, Tu G, Sun W, Hu Z. Segregation and diffusion behavior of niobium in a highly alloyed nickel-base superalloy. Trans Nonferrous Met Soc China 2011;21(11):2402‒7. 链接1

[19] Miao Z, Shan A, Wu Y, Lu J, Xu W, Song H. Quantitative analysis of homogenization treatment of Inconel718 superalloy. Trans Nonferrous Met Soc China 2011;21(5):1009‒17. 链接1

[20] Liu F, Lin X, Yang G, Song M, Chen J, Huang W. Microstructure and residual stress of laser rapid formed Inconel 718 nickel-base superalloy. Opt Laser Technol 2011;43(1):208‒13. 链接1

[21] Liu F, Lin X, Huang C, Song M, Yang G, Chen J, et al. The effect of laser scanning path on microstructures and mechanical properties of laser solid formed nickel-base superalloy Inconel 718. J Alloys Compd 2011;509(13):4505‒9. 链接1

[22] Sohrabi MJ, Mirzadeh H, Rafiei M. Revealing the as-cast and homogenized microstructures of niobium-bearing nickel-based superalloy. Int J Metalcast 2019;13(2):320‒30. 链接1

[23] Yang J, Li F, Pan A, Yang H, Zhao C, Huang W, et al. Microstructure and grain growth direction of SRR99 single-crystal superalloy by selective laser melting. J Alloys Compd 2019;808:151740. 链接1

[24] Sozanska M, Maciejny A, Dagbert C, Galland J, Hyspecká L. Use of quantitative metallography in the evaluation of hydrogen action during martensitic transformations. Mater Sci Eng A 1999;273‒275:485‒90.

[25] Dybowski B, Rzychoń T, Chmiela B. The influence of strontium on the microstructure of cast magnesium alloys containing aluminum and calcium. Key Eng Mater 2014;607:37‒42. 链接1

[26] Chlebus E, Gruber K, Kuźnicka B, Kurzac J, Kurzynowski T. Effect of heat treatment on the microstructure and mechanical properties of Inconel 718 processed by selective laser melting. Mater Sci Eng A 2015;639:647‒55. 链接1

[27] Holland S, Wang X, Chen J, Cai W, Yan F, Li L. Multiscale characterization of microstructures and mechanical properties of Inconel 718 fabricated by selective laser melting. J Alloys Compd 2019;784:182‒94. 链接1

[28] Qi H, Azer M, Ritter A. Studies of standard heat treatment effects on microstructure and mechanical properties of laser net shape manufactured Inconel 718. Metall Mater Trans A 2009;40(10):2410‒22. 链接1

[29] Sohrabi MJ, Mirzadeh H, Rafiei M. Solidification behavior and Laves phase dissolution during homogenization heat treatment of Inconel 718 superalloy. Vacuum 2018;154:235‒43. 链接1

[30] Cai DY, Zhang WH, Nie PL, Liu WC, Yao M. Dissolution kinetics and behavior of δ phase in Inconel 718. Trans Nonferrous Met Soc China 2003;13(6):1338‒41.

[31] Enomoto M, Nojiri N. Influence of interfacial curvature on the growth and dissolution kinetics of a spherical precipitate. Scr Mater 1997;36(6):625‒32. 链接1

[32] You X, Tan Y, Zhao L, You Q, Wang Y, Ye F, et al. Effect of solution heat treatment on microstructure and electrochemical behavior of electron beam smelted Inconel 718 superalloy. J Alloys Compd 2018;741:792‒803. 链接1

[33] Anbarasan N, Gupta BK, Prakash S, Muthukumar P, Oyyaravelu R, Kumar RJF, et al. Effect of heat treatment on the microstructure and mechanical properties of Inconel 718. Mater Today Proc 2018;5(2 Pt 2):7716‒24. 链接1

相关研究