期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2022年 第14卷 第7期 doi: 10.1016/j.eng.2021.09.004

碳中和愿景下的中国能源转型之路

Institute of Energy, Environment, and Economy, Tsinghua University, Beijing 100084, China

收稿日期: 2021-05-11 修回日期: 2021-08-29 录用日期: 2021-09-20 发布日期: 2021-10-27

下一篇 上一篇

摘要

为了实现碳中和,中国能源系统需要经历深刻转型。本文利用能源-环境-经济模型China TIMES,设计了4个面向碳中和的能源转型情景,对因实现碳达峰时间不同和2050年碳排放量不同引起的转型路径差异进行了比较。结果显示,中国的二氧化碳排放量将在2025—2030年达到103亿~104亿吨的峰值。2050年,中国能源消费总量(电热当量)的60%、发电量的90%将由可再生能源提供,终端电气化率提升至接近60%。能源转型将带来持续的空气质量改善,2050年局地空气污染物排放较2020年减少85%,而提前达峰能够产生更多的近期收益。提前达峰要求在未来10年大量部署可再生能源,并在2025年后加速淘汰煤炭,这加大了近期的减排压力。然而,这些措施能尽早获得更好的空气质量,减少二氧化碳累计排放,为其他部门的转型争取更多时间。另外,本研究还发现,中国2050年的减排压力会在近期对可再生能源的发展、能源服务需求变化和福利损失产生影响。

图片

图1

图2

图3

图 4

图5

图6

图7

图8

图9

图10

图11

参考文献

[ 1 ] Intergovernmental Panel on Climate Change. Global warming of 1.5 ℃: an IPCC special report on the impacts of global warming of 1.5 ℃ above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty. Geneva: Intergovernmental Panel on Climate Change; 2018. 链接1

[ 2 ] UNFCCC. Decision 1/CP.21: Adoption of the Paris Agreement. In: Paris Climate Change Conference; 2015 Nov 30‒Dec 11; Paris, France; 2015.

[ 3 ] International Energy Agency. World energy outlook 2020. Report. Paris: International Energy Agency; 2020 Oct. 链接1

[ 4 ] He G, Lin J, Sifuentes F, Liu X, Abhyankar N, Phadke A. Rapid cost decrease of renewables and storage accelerates the decarbonization of China’s power system. Nat Commun 2020;11(1):2486. 链接1

[ 5 ] He G, Lin J, Zhang Y, Zhang W, Larangeira G, Zhang C, et al. Enabling a rapid and just transition away from coal in China. One Earth 2020;3(2):187‒94. 链接1

[ 6 ] Wang R, Chang S, Cui X, Li J, Ma L, Kumar A, et al. Retrofitting coal-fired power plants with biomass co-firing and carbon capture and storage for net zero carbon emission: a plant-by-plant assessment framework. Glob Change Biol Bioenergy 2021;13(1):143‒60. 链接1

[ 7 ] Lu X, Cao L, Wang H, Peng W, Xing J, Wang S, et al. Gasification of coal and biomass as a net carbon-negative power source for environment-friendly electricity generation in China. Proc Natl Acad Sci USA 2019;116(17):8206‒13. 链接1

[ 8 ] Qin Z, Zhuang Q, Cai X, He Y, Huang Y, Jiang D, et al. Biomass and biofuels in China: toward bioenergy resource potentials and their impacts on the environment. Renew Sustain Energy Rev 2018;82:2387‒400. 链接1

[ 9 ] Yang Q, Zhou H, Bartocci P, Fantozzi F, Mašek O, Agblevor FA, et al. Prospective contributions of biomass pyrolysis to China’‍s 2050 carbon reduction and renewable energy goals. Nat Commun 2021;12(1):1698. 链接1

[10] Kang Y, Yang Q, Bartocci P, Wei H, Liu SS, Wu Z, et al. Bioenergy in China: evaluation of domestic biomass resources and the associated greenhouse gas mitigation potentials. Renew Sustain Energy Rev 2020;127:109842. 链接1

[11] Yang B, Wei YM, Liu LC, Hou YB, Zhang K, Yang L, et al. Life cycle cost assessment of biomass co-firing power plants with CO2 capture and storage considering multiple incentives. Energy Econ 2021;96:105173. 链接1

[12] Huang X, Chang S, Zheng D, Zhang X. The role of BECCS in deep decarbonization of China’‍s economy: a computable general equilibrium analysis. Energy Econ 2020;92:104968. 链接1

[13] Ren L, Zhou S, Peng T, Ou X. A review of CO2 emissions reduction technologies and low-carbon development in the iron and steel industry focusing on China. Renew Sustain Energy Rev 2021;143:110846. 链接1

[14] Habert G, Miller SA, John VM, Provis JL, Favier A, Horvath A, et al. Environmental impacts and decarbonization strategies in the cement and concrete industries. Nat Rev Earth Environ 2020;1(11):559‒73. 链接1

[15] Rissman J, Bataille C, Masanet E, Aden N, MorrowWR, Zhou N, et al. Technologies and policies to decarbonize global industry: review and assessment of mitigation drivers through 2070. Appl Energy 2020;266:114848. 链接1

[16] Wang R, Feng W, Wang L, Lu S. A comprehensive evaluation of zero energy buildings in cold regions: actual performance and key technologies of cases from China, the US, and the European Union. Energy 2021;215:118992. 链接1

[17] Xing R, Hanaoka T, Masui T. Deep decarbonization pathways in the building sector: China’s NDC and the Paris Agreement. Environ Res Lett 2021;16(4):044054. 链接1

[18] Chiaramonti D, Maniatis K. Security of supply, strategic storage and Covid19: which lessons learnt for renewable and recycled carbon fuels, and their future role in decarbonizing transport? Appl Energy 2020;271:115216. 链接1

[19] Institute of Climate Change and Sustainable Development Tsinghua University. China’‍s long-term low-carbon development strategies and pathways comprehensive report. Beijing: China Environment Publishing Group; 2021. Chinese. 链接1

[20] Bu C, Cui X, Li R, Li J, Zhang Y, Wang C, et al. Achieving net-zero emissions in China’s passenger transport sector through regionally tailored mitigation strategies. Appl Energy 2021;284:116265. 链接1

[21] Van Soest HL, den Elzen MGJ, van Vuuren DP. Net-zero emission targets for major emitting countries consistent with the Paris Agreement. Nat Commun 2021;12(1):2140. 链接1

[22] Cai B, Cao L, Lei Y, Wang C, Zheng L, Zhu J, et al. China’s carbon emission pathway under the carbon neutrality target. China Popul Resour Environ 2021;31(1):7‒14. Chinese.

[23] Mao X, Zeng A, Xing Y, Gao Y, He F. From concept to action: a review of research on co-benefits and co-control of greenhouse gases and local air pollutants reductions. Clim Change Res 2021;17:255‒67. Chinese. 链接1

[24] Xing J, Lu X, Wang S, Wang T, Ding D, Yu S, et al. The quest for improved air quality may push China to continue its CO2 reduction beyond the Paris Commitment. Proc Natl Acad Sci USA 2020;117(47):29535‒42. 链接1

[25] Yang X, Pang J, Teng F, Gong R, Springer C. The environmental co-benefit and economic impact of China’s low-carbon pathways: evidence from linking bottom-up and top-down models. Renew Sustain Energy Rev 2021;136:110438. 链接1

[26] Li N, Chen W. Energy‒water nexus in China’s energy bases: from the Paris Agreement to the Well Below 2 Degrees target. Energy 2019;166:277‒86. 链接1

[27] Global Energy Interconnection Development and Cooperation Organization. A study of China’s carbon neutrality by 2060. Report. Beijing: Global Energy Interconnection Development and Cooperation Organization; 2021 Mar. Chinese.

[28] Duan H, Zhou S, Jiang K, Bertram C, Harmsen M, Kriegler E, et al. Assessing China’s efforts to pursue the 1.5 ℃ warming limit. Science 2021;372(6540):378‒85. 链接1

[29] Energy Foundation China. China’s new growth pathway: from the 14th Five-Year Plan to carbon neutrality. Report. Beijing: Energy Foundation China; 2020 Dec.

[30] Rogelj J, Geden O, Cowie A, Reisinger A. Net-zero emissions targets are vague: three ways to fix. Nature 2021;591(7850):365‒8. 链接1

[31] Chen W, Yin X, Zhang H. Towards low carbon development in China: a comparison of national and global models. Clim Change 2016;136(1):95‒108. 链接1

[32] Wang H, Chen W, Zhang H, Li N. Modeling of power sector decarbonization in China: comparisons of early and delayed mitigation towards 2-degree target. Clim Change 2020;162(4):1843‒56. 链接1

[33] Tang H, Zhang S, Chen W. Assessing representative CCUS layouts for China’s power sector toward carbon neutrality. Environ Sci Technol 2021;‍55(16):11225‒35. 链接1

[34] Yin X, Chen W. Trends and development of steel demand in China: a bottomup analysis. Resour Policy 2013;38(4):407‒15. 链接1

[35] Chen W, Yin X, Ma D. A bottom-up analysis of China’‍s iron and steel industrial energy consumption and CO2 emissions. Appl Energy 2014;‍136:1174‒83. 链接1

[36] Ma D, Chen W, Yin X, Wang L. Quantifying the co-benefits of decarbonisation in China’s steel sector: an integrated assessment approach. Appl Energy 2016;162:1225‒37. 链接1

[37] Li N, Ma D, Chen W. Quantifying the impacts of decarbonisation in China’s cement sector: a perspective from an integrated assessment approach. Appl Energy 2017;185:1840‒8. 链接1

[38] Shi J, Chen W, Yin X. Modelling building’s decarbonization with application of China TIMES model. Appl Energy 2016;162:1303‒12. 链接1

[39] Zhang H, Chen W, Huang W. TIMES modelling of transport sector in China and USA: comparisons from a decarbonization perspective. Appl Energy 2016;162:1505‒14. 链接1

[40] Houghton JT, Meira Filho LG, Lim B, Treanton K, Mamaty I, Bonduki Y. Revised 1996 IPCC guidelines for national greenhouse gas inventories: the workbook (volume 2). Geneva: Intergovernmental Panel on Climate Change; 1996.

[41] Li N, Chen W, Rafaj P, Kiesewetter G, Schöpp W, Wang H, et al. Air quality improvement co-benefits of low-carbon pathways toward well below the 2 ℃ climate target in China. Environ Sci Technol 2019;53(10):5576‒84. 链接1

相关研究