期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2023年 第25卷 第6期 doi: 10.1016/j.eng.2021.09.022

珊瑚岛礁环境噪声成像

a Key Laboratory of Ocean and Marginal Sea Geology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
b Sanya Institute of Oceanology, South China Sea Institute of Oceanology, Sanya 572100, China
c Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China

收稿日期: 2021-07-11 修回日期: 2021-09-13 录用日期: 2021-09-29 发布日期: 2022-04-20

下一篇 上一篇

摘要

珊瑚岛礁作为海洋中宝贵的陆地资源,不仅是海洋资源开发和海洋权益保护的重要基地,也是研究地质构造演化与地球环境变迁等科学问题的重要载体。如何经济、高效地获取岛礁地下结构已成为珊瑚岛礁工程地质学领域的一个重要研究方向。传统海洋地球物理探测技术和钻井都无法提供珊瑚岛礁陆域本体全面的三维地质结构影像,因此需发展一种适合珊瑚岛礁特殊环境的三维成像技术。基于密集台阵的环境噪声成像技术已经在大陆地区得到了广泛应用,但对其在珊瑚岛礁的适用性一直缺乏系统研究。本文利用布设于南海岛礁上的密集地震台站,开展了海洋中孤立珊瑚岛礁的环境噪声信号特征分析和浅表三维地质结构噪声成像研究。研究发现:①海洋中孤立岛礁的环境噪声信号大致可分为1 Hz 以下、1~5 Hz和5 Hz以上三部分,其中,5 Hz以下噪声频谱特征在不同台站均具有很好的一致性,5 Hz以上却差异显著;②对于珊瑚岛礁5 Hz以下噪声信号,仅需24 h 时长的连续波形即可获取高信噪比且对称性良好的互相关函数,而5 Hz 以上信号难以提取高质量互相关函数;③珊瑚岛礁浅表地质结构具有明显的分区性,岛体S波速度总体表现为向海侧高、向潟湖侧低的特征,这与岛礁向海侧的外礁坪地层胶结程度较高一致;④珊瑚岛礁在25~75 m和200~300 m处存在两个低速层位,这与岩芯样品揭示的高孔隙层位具有很好的一致性,反映了岛礁形成过程中经历了多次地层暴露、强烈风化的地质事件。研究结果表明,环境噪声成像能够经济高效、环境友好地获取珊瑚岛礁浅表精细结构,是未来岛礁工程地质探测的优选方案之一。

图片

图1

图2

图3

图4

图5

图6

图7

图8

图9

图10

图11

参考文献

[ 1 ] Zhao H, Wang L, Yuan J. Sustainable development of the coral reefs in the South China Sea Islands. Trop Geogr 2016;36(1):55‒65. Chinese.

[ 2 ] An Z, Li G, Ma Y, Xu J, Ding D, Yang Z, et al. Research on coral reefal geological stability. Mark Sci 2018;42(3):113‒20. Chinese.

[ 3 ] Bellwood DR, Hughes TP. Regional-scale assembly rules and biodiversity of coral reefs. Science 2001;292(5521):1532‒5. 链接1

[ 4 ] Huang R, Yu K, Wang Y, Liu J, Zhang H. Progress of the study on coral reef remote sensing. Natl Remote Sens Bull 2019;23(6):1091‒112. Chinese. 链接1

[ 5 ] Camoin GF, Webster JM. Coral reef response to Quaternary sea-level and environmental changes: state of the science. Sedimentology 2015;62(2):401‒28. 链接1

[ 6 ] Sun Z, Zhao H. Coral reef engineering geology advancing of a new discipline. Hydrogeol Eng Geol 1998;42(1):1‒4. Chinese.

[ 7 ] Kayanne H, Yamano H, Randall RH. Holocene sea-level changes and barrier reef formation on an oceanic island, Palau Islands, western Pacific. Sediment Geol 2002;150(1‒2):47‒60.

[ 8 ] Gischler E, Hudson JH. Holocene development of the Belize Barrier Reef. Sediment Geol 2004;164(3‒4):223‒36.

[ 9 ] Woodroffe CD, Webster JM. Coral reefs and sea-level change. Mar Geol 2014;352:248‒67. 链接1

[10] Synolakis CE, Bardet JP, Borrero JC, Davies HL, Okal EA, Silver EA, et al. The slump origin of the 1998 Papua New Guinea Tsunami. P Roy Soc A-Math Phy 2002;458(2020):763‒89. 链接1

[11] Mulia IE, Watada S, Ho TC, Satake K, Wang Y, Aditiya A. Simulation of the 2018 Tsunami due to the flank failure of Anak Krakatau Volcano and implication for future observing systems. Geophys Res Lett 2020;47(14). e2020GL087334. 链接1

[12] Cui Y, Ma L, Liu H, Huang J. Discussion on geophysical methods applied to investigation of coral island and reef. Rock Soil Mech 2014;35(S2):683‒9.

[13] Walter DJ, Lambert DN, Young DC. Sediment facies determination using acoustic techniques in a shallow-water carbonate environment, Dry Tortugas, Florida. Mar Geol 2002;182(1‒2):161‒77.

[14] Somoza L, Ercilla G, Urgorri V, León R, Medialdea T, Paredes M, et al. Detection and mapping of cold-water coral mounds and living Lophelia reefs in the Galicia Bank. Atlantic NW Iberia margin. Mar Geol 2014;349:73‒90. 链接1

[15] Saqab MM, Bourget J. Seismic geomorphology and evolution of early-mid Miocene isolated carbonate build-ups in the Timor Sea, North West Shelf of Australia. Mar Geol 2016;379:224‒45. 链接1

[16] Van Tuyl J, Alves TM, Cherns L. Geometric and depositional responses of carbonate build-ups to Miocene sea level and regional tectonics offshore northwest Australia. Mar Pet Geol 2018;94:144‒65. 链接1

[17] Huang X, Betzler C, Wu S, Bernhardt A, Eagles G, Han X, et al. First documentation of seismic stratigraphy and depositional signatures of Zhongsha atoll (Macclesfield Bank), South China Sea. Mar Pet Geol 2020;117:104349. 链接1

[18] Grainge AM, Davies KG. Reef exploration in the east Sengkang Basin, Sulawesi. Indonesia Mar Pet Geol 1985;2(2):142‒55. 链接1

[19] Wu S, Yu K, Li X, Zhang H, Chen W. The evolution of the carbonate platforms in the South China Sea. Sci Technol Rev 2020;38(18):68‒74. Chinese.

[20] Leclerc F, Feuillet N, Cabioch G, Deplus C, Lebrun JF, Bazin S, et al. The Holocene drowned reef of Les Saintes plateau as witness of a long-term tectonic subsidence along the Lesser Antilles volcanic arc in Guadeloupe. Mar Geol 2014;355:115‒35. 链接1

[21] Webster JM, George NPJ, Beaman RJ, Hill J, Puga-Bernabéu Á, Hinestrosa G, et al. Submarine landslides on the Great Barrier Reef shelf edge and upper slope: a mechanism for generating tsunamis on the north-east Australian coast? Mar Geol 2016;371:120‒9. 链接1

[22] Puga-Bernabéu A, Beaman RJ, Webster JM, Thomas AL, Jacobsen G. Gloria Knolls Slide: A prominent submarine landslide complex on the Great Barrier Reef margin of north-eastern Australia. Mar Geol 2017;385:68‒83. 链接1

[23] Xiu C, Zhang D, Zhai S, Liu X, Bi D. Zricon U-Pb age of granitic rocks from the basement beneath the Shi Island, Xisha Islands and its geological significance. Mar Geol Quat Geol 2016;36(3):115‒26. Chinese.

[24] Wu F, Xie X, Betzler C, Zhu W, Zhu Y, Guo L, et al. The impact of eustatic sealevel fluctuations, temperature variations and nutrient-level changes since the Pliocene on tropical carbonate platform (Xisha Islands, South China Sea). Palaeogeogr Palaeoclimatol Palaeoecol 2019;514:373‒85. 链接1

[25] Yi L, Deng C, Yan W, Wu H, Zhang C, Xu W, et al. Neogen‒quaternary magnetostratigraphy of the biogenic reef sequence of core NK-1 in Nansha Qundao. South China Sea Sci Bull 2021;66(3):200‒3. 链接1

[26] Shapiro NM, Campillo M, Stehly L, Ritzwoller MH. High-resolution surfacewave tomography from ambient seismic noise. Science 2005;307(5715):1615‒8. 链接1

[27] Yao H, van der Hilst RD, de Hoop MV. Surface wave array tomography in SE Tibet from ambient seismic noise and two-station analysis—I. phase velocity maps. Geophys J Int 2006;166(2):732‒44. 链接1

[28] Yao H, Beghein C, van der Hilst RD. Surface wave array tomography in SE Tibet from ambient seismic noise and two-station analysis—II. crustal and uppermantle structure. Geophys J Int 2008;173(1):205‒19. 链接1

[29] Lin FC, Ritzwoller MH, Townend J, Bannister S, Savage MK. Ambient noise Rayleigh wave tomography of New Zealand. Geophys J Int 2007;170(2):649‒66. 链接1

[30] Lin FC, Li D, Clayton RW, Hollis D. High-resolution 3D shallow crustal structure in Long Beach, California: application of ambient noise tomography on a dense seismic array. Geophysics 2013;78(4):Q45‒56. 链接1

[31] Roux P, Moreau L, Lecointre A, Hillers G, Campillo M, Ben-Zion Y, et al. A methodological approach towards high-resolution surface wave imaging of the San Jacinto Fault Zone using ambient-noise recordings at a spatially dense array. Geophys J Int 2016;206(2):980‒92. 链接1

[32] Gu N, Wang K, Gao J, Ding N, Yao H, Zhang H. Shallow crustal structure of the Tanlu Fault Zone near Chao Lake in eastern China by direct surface wave tomography from local dense array ambient noise analysis. Pure Appl Geophys 2018;176(3):1193‒206. 链接1

[33] Mordret A, Roux P, Boue P, Ben-Zion Y. Shallow three-dimensional structure of the San Jacinto fault zone revealed from ambient noise imaging with a dense seismic array. Geophys J Int 2019;216(2):896‒905. 链接1

[34] Yang H, Duan Y, Song J, Jiang X, Tian X, Yang W, et al. Fine structure of the Chenghai fault zone, Yunnan, China constrained from teleseismic travel time and ambient noise tomography. J Geophys Res Solid Earth 2020;125(7): e2020JB019565. 链接1

[35] Cheng F, Xia J, Ajo-Franklin JB, Behm M, Zhou C, Dai T, et al. High-resolution ambient noise imaging of geothermal reservoir using 3C dense seismic nodal array and ultra-short observation. J Geophys Res 2021;126(8). e2021JB021827. 链接1

[36] Zhou C, Xia J, Pang J, Cheng F, Chen X, Xi C, et al. Near-surface geothermal reservoir imaging based on the customized dense seismic network. Surv Geophys 2021;42(3):673‒97. 链接1

[37] Garambois S, Voisin C, Romero Guzman M, Brito D, Guillier B, Refloch A. Analysis of ballistic waves in seismic noise monitoring of water table variations in a water field site: added value from numerical modelling to data understanding. Geophys J Int 2019;219(3):1636‒47. 链接1

[38] Grobbe N, Mordret A, Barde-Cabusson S, Ellison L, Lach M, Seo YH, et al. A multi-hydrogeophysical study of a watershed at Kaiwi Coast (O’ahu, Hawai’i), using seismic ambient noise surface wave tomography and self-potential data. Water Resour Res 2021;57(4):e2020WR029057. 链接1

[39] Wang S, Sun X, Liu L, Zong J. Sub-surface structures and site effects extracted from ambient noise in metropolitan Guangzhou. China. Eng Geol 2020;268:105526. 链接1

[40] Yang X, Gao H, Rathnayaka S, Li C. A comprehensive quality analysis of empirical green’s functions at ocean-bottom seismometers in Cascadia. Seismol Res Lett 2019;90(2A):744‒53. 链接1

[41] Wolf FN, Lange D, Dannowski A, Thorwart M, Crawford W, Wiesenberg L, et al. 3D crustal structure of the Ligurian Sea revealed by ambient noise tomography using ocean bottom seismometer data. Solid Earth Discuss 2021;12:2597‒613. 链接1

[42] Tian J, Lin J, Zhang F, Xu M, Zhang Y, Guo L, et al. Time correction of oceanbottom seismometers using improved ambient noise cross correlation of multicomponents and dual-frequency bands. Seismol Res Lett 2021;92(3):2004‒14. 链接1

[43] Bensen GD, Ritzwoller MH, Barmin MP, Levshin AL, Lin F, Moschetti MP, et al. Processing seismic ambient noise data to obtain reliable broad-band surface wave dispersion measurements. Geophys J Int 2007;169(3):1239‒60. 链接1

[44] Schimmel M, Stutzmann E, Gallart J. Using instantaneous phase coherence for signal extraction from ambient noise data at a local to a global scale. Geophys J Int 2011;184(1):494‒506. 链接1

[45] Stehly L, Campillo M, Shapiro NM. A study of the seismic noise from its longrange correlation properties. J Geophys Res 2006;111(B10):B10306. 链接1

[46] Herrmann RB. Computer programs in seismology: an evolving tool for instruction and research. Seismol Res Lett 2013;84(6):1081‒8. 链接1

[47] Rawlinson N, Sambridge M. Wave front evolution in strongly heterogeneous layered media using the fast marching method. Geophys J Int 2004;156(3):631‒47. 链接1

[48] Sun Z, Lu B. Elastic wave properties of coral reef rock in Nansha Islands. J Eng Geol 1999;7(2):175‒80. Chinese.

[49] Zhao H, Wang L. Construction of artificial islands on coral reef in the South China Sea Islands. Trop Geogr 2017;37(5):681‒93. Chinese.

[50] Luo Y, Li G, Xu W, Cheng J, Liu J, Yan W. Characteristics of Quaternary exposure surfaces in Well Nanke 1 and its relationship with sea level changes. J Trop Oceanogr 2022;41(1):15. Chinese.

[51] Gutenberg B. Microseisms. Adv Geophys 1958;5:53‒92. 链接1

[52] Asten MW. Geological control of the three-component spectra of Rayleighwave microseisms. Bull Seismol Soc Am 1978;68(6):1623‒36.

[53] Bonnefoy-Claudet S, Cotton F, Bard PY. The nature of noise wavefield and its applications for site effects studies: a literature review. Earth Sci Rev 2006;79(3‒4):205‒27.

[54] Li C, Yao H, Fang H, Huang X, Wan K, Zhang H, et al. 3D near-surface shearwave velocity structure from ambient-noise tomography and borehole data in the Hefei urban area. China Seismol Res Lett 2016;87(4):882‒92. 链接1

[55] Li Z, Ni S, Zhang B, Bao F, Zhang S, Deng Y, et al. Shallow magma chamber under the Wudalianchi Volcanic Field unveiled by seismic imaging with dense array. Geophys Res Lett 2016;43(10):4954‒61. 链接1

[56] Yang Y, Ritzwoller MH, Levshin AL, Shapiro NM. Ambient noise Rayleigh wave tomography across Europe. Geophys J Int 2007;168(1):259‒74. 链接1

[57] Liu Y, Zhang H, Fang H, Yao H, Gao J. Ambient noise tomography of threedimensional near-surface shear-wave velocity structure around the hydraulic fracturing site using surface microseismic monitoring array. J Appl Geophys 2018;159:209‒17. 链接1

[58] Yao H, van der Hilst RD. Analysis of ambient noise energy distribution and phase velocity bias in ambient noise tomography, with application to SE Tibet. Geophys J Int 2010;179:1113‒32. 链接1

[59] Froment B, Campillo M, Roux P, Gouédard P, Verdel A, Weaver RL. Estimation of the effect of nonisotropically distributed energy on the apparent arrival time in correlations. Geophysics 2010;75(5):SA85‒93. 链接1

[60] Delaney E, Ermert L, Sager K, Kritski A, Bussat S, Fichtner A. Passive seismic monitoring with nonstationary noise sources. Geophysics 2017;82(4): KS57‒70. 链接1

相关研究